摘要:
The present disclosure relates to a positive electrode for a lithium secondary battery including an electrode current collector, and a positive electrode active material layer coated on at least a part of the electrode current collector, wherein the positive electrode active material layer includes a manganese-based positive electrode active material, and a porosity is from 30% to 35%, to improve high-temperature storage characteristics and high-temperature cycle characteristics.
摘要:
The present disclosure provides a method for preparing a lithium secondary battery by bringing a first cell using a first cathode active material of formula (I) Li(LixMy-y′M′y′)O2-zAz (I) wherein, x, y, y′, and z satisfy 0
摘要:
The present invention relates to an electrode for an electrochemical device and a method for manufacturing the same. More specifically, the present invention relates to an electrode for an electrochemical device having excellent electrolyte impregnation and improved battery output and lifecycle properties, and a method for manufacturing the electrode. The electrode according to the present invention enables an electrolyte to easily permeate into the electrode, thereby remarkably improving a lifecycle property or an output property due to high electrolyte impregnation. In addition, the method for manufacturing an electrode, according to the present invention, does not cause the deterioration of porosity of a lower electrode active material monolayer, the deterioration being caused by a step performed during the formation of an upper electrode active material monolayer.
摘要:
The present disclosure provides a stack-folding type electrode assembly in which a plurality of full cells or bicells as unit cells is stacked on top of each other and surrounded by a second separator, each cell including a positive electrode, a negative electrode, and a first separator interposed between the positive electrode and the negative electrode, wherein a first binder is coated on at least a partial surface of the first separator, a second binder is coated on at least a partial surface of the second separator, and a content of the second binder is higher than a content of the first binder, to inhibit a loose phenomenon inside a battery, make the battery less prone to expansion, and have deformation resistance to an external impact.
摘要:
A secondary battery having improved output characteristics is disclosed. The secondary battery according to the present invention accommodates a cell assembly including a plurality of cells connected in parallel, and an electrolyte together in one package, in which positive electrodes of a plurality of central cells disposed at a central part of the cell assembly have a loading energy density higher than that of positive electrodes of a plurality of side cells disposed at a side part, and the positive electrodes of the central cells have positive electrode material coating layers formed at surfaces thereof, which are thicker than those formed at surfaces of the positive electrodes of the side cells. Preferably, the total resistance of the side cells is lower than the total resistance of the central cells.
摘要:
Provided are a method of predicting a battery charge limit not to cause lithium (Li)-plating, and a battery charging method and apparatus capable of quickly charging a battery based on the battery charge limit. A battery charge limit prediction method according to the present disclosure includes (a) fabricating a three-electrode cell including a unit cell and a reference electrode, (b) measuring a negative electrode potential (CCV) based on a state of charge (SOC) while charging the three-electrode cell, and (c) determining a point at which the negative electrode potential is not dropped but starts to be constant, as a lithium (Li)-plating occurrence point, and setting the Li-plating occurrence point as a charge limit.
摘要:
The present disclosure provides a method for preparing a lithium secondary battery by bringing a first cell using a first cathode active material of formula (I) Li(LixMy−y′M′y′)O2−zAz (I) wherein, x, y, y′, and z satisfy 0
摘要:
The present disclosure provides a method for removing gases generated in a lithium secondary battery using a cathode active material of the following formula (I) Li(LixMy−y′M′y′)O2−zAz (I) wherein, x, y, y′, and z satisfy 0
摘要:
The present disclosure refers to a cathode material composite having improved conductivity, and a cathode and electrochemical device having the cathode material composite. In accordance with one embodiment of the present disclosure, a conductive polymer is positioned on the surface of a shell present in the form of a tetragonal structure in the lithium manganese oxide, thereby enhancing electrical conductivity to be highly involved in reaction around 3V, and providing a conductive path to improve the capacity, life and rate characteristics of an electrochemical device.
摘要:
An electrode assembly, comprises one or more first electrodes comprising a cathode; one or more second electrodes comprising an anode; and a separator sheet having a zigzag form interposed therebetween. The separator sheet comprises a first porous polymer substrate; a first coating layer formed on one surface of the first porous polymer substrate and comprising a polymer binder, the first coating layer being faced with the cathode; and a second coating layer formed on the other surface of the first porous polymer substrate and comprising a mixture a polymer binder and inorganic particles, the second coating layer being faced with the anode and having a composition, a thickness and a porosity different from those of the first porous coating layer. A separator has porous coating layers with a different composition, thickness or porosity formed on each surface thereof.