Abstract:
The present disclosure relates to a thin film transistor substrate having two different types of thin film transistors on the same substrate and a display using the same. A disclosed display device may include a substrate, a first thin film transistor including a first semiconductor layer having a polycrystalline semiconductor material on the substrate, and a second thin film transistor including a second semiconductor layer including an oxide semiconductor material on the substrate. Both the first semiconductor layer and the second semiconductor layer may be disposed directly on a same underlying layer.
Abstract:
The present invention relates to a thin film transistor substrate having two different types of semiconductor materials on the same substrate, and a display using the same. A disclosed display may include a substrate, a first thin film transistor having a polycrystalline semiconductor material on the substrate and a second thin film transistor having an oxide semiconductor material on the substrate.
Abstract:
A thin-film transistor substrate and a display device comprising the same are provided which can improve display quality by reducing or preventing deterioration of the characteristics of thin-film transistors. The thin-film transistor substrate comprises thin-film transistors on a lower protective metal layer. Each thin-film transistor comprises a buffer layer, a semiconductor layer, a first insulating film, a gate electrode, a second insulating film, a source electrode and a drain electrode, and a first electrode. The lower protective metal layer is electrically connected to the gate electrode and overlaps the channel region of the semiconductor layer.
Abstract:
The present disclosure relates to a thin film transistor substrate having two different types of thin film transistors on the same substrate and a display using the same. A disclosed display device may include a substrate, a first thin film transistor including a first semiconductor layer having a polycrystalline semiconductor material on the substrate, and a second thin film transistor including a second semiconductor layer including an oxide semiconductor material on the substrate. Both the first semiconductor layer and the second semiconductor layer may be disposed directly on a same underlying layer.
Abstract:
A display device can include a pixel driver disposed on a substrate; and a display element electrically connected with the pixel driver, in which the pixel driver includes a first thin film including a first semiconductor layer, a first gate electrode, at least a part of the first gate electrode overlapping with the first semiconductor layer, and a first source electrode and a first drain electrode respectively connected with the first semiconductor layer; and a second thin film including a second semiconductor layer, a second gate electrode, at least a part of the second gate electrode overlapping with the second semiconductor layer, and a second source electrode and a second drain electrode respectively connected with the second semiconductor layer, in which the first semiconductor layer and the second semiconductor layer are disposed in different layers, and the first source electrode, the first drain electrode, the second gate electrode, the second source electrode, and the second drain electrode are disposed in a same layer.
Abstract:
A thin-film transistor substrate and a display device comprising the same are provided which can improve display quality by reducing or preventing deterioration of the characteristics of thin-film transistors. The thin-film transistor substrate comprises thin-film transistors on a lower protective metal layer. Each thin-film transistor comprises a buffer layer, a semiconductor layer, a first insulating film, a gate electrode, a second insulating film, a source electrode and a drain electrode, and a first electrode. The lower protective metal layer is electrically connected to the gate electrode and overlaps the channel region of the semiconductor layer.