Abstract:
An organic light-emitting display device and a method of manufacturing the same are disclosed. The organic light-emitting display device includes a touch sensor having a plurality of touch electrodes on an encapsulation stack covering a light-emitting element. The touch electrodes are formed at a low temperature and are crystallized through an annealing process, whereby it is possible to prevent damage to an organic light-emitting layer at the time of forming the touch electrodes. Thus the touch electrodes can be formed on the encapsulation stack without an additional bonding process to bond the touch sensor to the organic light-emitting display device.
Abstract:
A fabricating apparatus and a method of a flat plate display are disclosed. A fabricating apparatus of a flat plate display includes a stage on which a substrate having liquid resin formed thereon is seated, a imprinting mold bonded with the liquid resin of the substrate to form a thin film pattern on the substrate, the imprinting mold comprises projections and grooves, and a planarization layer formed between the stage and the substrate to planarize a surface of the stage.
Abstract:
A viewing angle switchable display device includes: a substrate having at least one subpixel; a plurality of transistors in the at least one subpixel on the substrate; first and second light emitting diodes in the at least one subpixel on the substrate, the first and second light emitting diodes connected to two, respectively, of the plurality of transistors; and an integrated lens on the first and second light emitting diodes, the integrated lens including a half cylindrical lens corresponding to the first light emitting diode and a half spherical lens corresponding to the second light emitting diode.
Abstract:
A light source unit for a display device includes: a printed circuit board including a soldering pad located on a substrate of glass and including a copper layer, and a first diffusing barrier pattern located on the soldering pad and including a molybdenum alloy; and a light emitting diode mounted on the soldering pad through a solder resist. In one embodiment, the printed circuit board is a glass printed circuit board.
Abstract:
According to a lighting apparatus using an organic light-emitting diode and a manufacturing method thereof of the present disclosure, a current imbalance due to a short circuit is controlled using a transparent high-resistance conductive film as a positive electrode instead of indium tin oxide (ITO), and a decrease in luminance is prevented by decreasing resistance of a positive electrode of an emission region through a post treatment. According to the present disclosure, it is possible to solve the problem of lighting malfunction of an entire panel, caused by a short circuit due to a foreign substance, even without reducing an aperture ratio, and concurrently, it is possible to secure normal luminance as resistance of an emission region is decreased.
Abstract:
According to a lighting apparatus using an organic light-emitting diode and a manufacturing method thereof of the present disclosure, a current imbalance due to a short circuit is controlled using a transparent high-resistance conductive film as a positive electrode instead of indium tin oxide (ITO), and a decrease in luminance is prevented by decreasing resistance of a positive electrode of an emission region through a post treatment. According to the present disclosure, it is possible to solve the problem of lighting malfunction of an entire panel, caused by a short circuit due to a foreign substance, even without reducing an aperture ratio, and concurrently, it is possible to secure normal luminance as resistance of an emission region is decreased.
Abstract:
An organic light emitting diode display device and a method for manufacturing the same are disclosed where permeation of moisture and oxygen may be prevented. The organic light emitting diode display device includes a protective members including an first inorganic film formed on a substrate to completely cover an organic light emitting diode, an organic film formed on the first inorganic film, and a second inorganic film formed on the first inorganic film and the organic film, wherein the organic film includes a first organic pattern corresponding to upper and side parts of the organic light emitting diode, and at least one second organic pattern being spaced from the first organic pattern and surrounding the first organic pattern, and the second organic pattern has an upper surface having the same height as an upper surface of the first organic pattern.
Abstract:
An organic light emitting diode display device and a method for manufacturing the same are disclosed where permeation of moisture and oxygen may be prevented. The organic light emitting diode display device includes a protective members including an first inorganic film formed on a substrate to completely cover an organic light emitting diode, an organic film formed on the first inorganic film, and a second inorganic film formed on the first inorganic film and the organic film, wherein the organic film includes a first organic pattern corresponding to upper and side parts of the organic light emitting diode, and at least one second organic pattern being spaced from the first organic pattern and surrounding the first organic pattern, and the second organic pattern has an upper surface having the same height as an upper surface of the first organic pattern.
Abstract:
An array substrate includes: a trench having a depth from a surface of a substrate; a gate line, a gate electrode and a data pattern filling the respective trenches, wherein the data pattern is between the adjacent gate lines; a gate insulating layer on the gate line, the gate electrode and the data pattern, substantially flat over the substrate, and including contact holes that expose both ends of the data pattern, respectively; a data connection portion on the gate insulating layer and contacting the adjacent data patterns through the contact holes; a source electrode extending from the data connection portion, and a drain electrode spaced apart from the source electrode; a passivation layer on the source and drain electrodes and including a drain contact hole exposing the drain electrode; and a pixel electrode on the passivation layer and contacting the drain electrode through the drain contact hole.
Abstract:
A light source unit for a display device includes: a printed circuit board including a soldering pad located on a substrate of glass and including a copper layer, and a first diffusing barrier pattern located on the soldering pad and including a molybdenum alloy; and a light emitting diode mounted on the soldering pad through a solder resist. In one embodiment, the printed circuit board is a glass printed circuit board.