Abstract:
A method of performing cell search includes receiving a primary synchronization signal (PSS) comprising a primary synchronization code (PSC) and receiving a secondary synchronization signal (SSS) comprising a first secondary synchronization code (SSC) and a second SSC, wherein the SSS includes a first SSS and a second SSS, the first SSC and the second SSC are arranged in that order in the first SSS, and the second SSC and the first SSC are arranged in that order in the second SSS. Detection performance on synchronization signals can be improved, and cell search can be performed more reliably.
Abstract:
A method is provided for transmitting, by a base station, signals in a communication system. Carrier aggregation configuration information is transmitted to a mobile station via a primary carrier band of the mobile station. The carrier aggregation configuration information informs the mobile station of a subsidiary carrier band for the mobile station. Uplink control information for the subsidiary carrier band is received from the mobile station via the primary carrier band. The carrier aggregation configuration information includes a physical identification of a frequency allocation band used as the subsidiary carrier band and a logical identification assigned to the subsidiary carrier band for the mobile station. The physical identification includes one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system. The logical identification includes a logical index assigned to the subsidiary carrier band identifying the subsidiary carrier band.
Abstract:
A method is provided for performing a random access procedure by a Node-B with a specific user equipment (UE) within a cell in which a plurality of UEs are located together. The Node-B transmits a random access procedure configuration including a basic sequence index related with a random access channel and zero correlation zone (ZCZ) configuration. The Node-B receives a random access preamble corresponding to the random access procedure configuration from the UE over the random access channel. A length of a cyclic part and a length of a sequence part of the random access preamble are differently given based on the random access procedure configuration. The random access preamble is generated from Constant Amplitude Zero Auto-Correlation (CAZAC) sequences based on the basic sequence index by applying a length of a cyclic shift according to the ZCZ configuration.
Abstract:
A method and device for transmitting a power headroom report (PHR) by a user equipment (UE) in a communication system supporting a plurality of carriers. The method includes transmitting, to an eNode B (eNB), a power headroom report (PHR) related to the plurality of carriers configured for the UE. The power headroom report (PHR) comprises a first type power headroom (PH) and a second type power headroom (PH). While the first type power headroom (PH) is calculated for a power headroom report (PHR) related to a primary carrier and a non-primary carrier, the second type power headroom (PH) is calculated for a power headroom report (PHR) related to only the primary carrier. The second type power headroom (PH) is calculated for case of simultaneous transmission of a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH).
Abstract:
A method for transmitting a reference signal by a user equipment (UE) in a wireless communication system. The UE generates an uplink reference signal in a subframe comprising first, second, third, fourth, fifth, sixth and seventh orthogonal frequency division multiplexing (OFDM) symbols in time domain and a plurality of subcarriers in frequency domain. The UE transmits the uplink reference signal to a base station in the third, fourth and fifth OFDM symbols. The transmitted uplink reference signal is hopped in the frequency domain, based on a cell specific hopping parameter.
Abstract:
A method of transmitting control signals in a wireless communication system includes multiplexing a first control signal with a second control signal in a slot, the slot comprising a plurality of orthogonal frequency division multiplexing (OFDM) symbols in time domain, the plurality of OFDM symbols being divided into a plurality of data OFDM symbols and a plurality of reference signal (RS) OFDM symbols, wherein the first control signal is mapped to the plurality of data OFDM symbols after the first control signal is spread by a base sequence in the frequency domain, the RS is mapped to the plurality of RS OFDM symbols, the second control signal is mapped to at least one of the plurality of RS OFDM symbols, and transmitting the first control signal and the second control signal in the slot.
Abstract:
A method and apparatus for transmitting or detecting primary synchronization signal. The receiver receives primary synchronization signal from a transmitter, and detects the sequence used in the received primary synchronization signal by using three root indexes. Here, the primary synchronization signal is generated by using a Zadoff-Chu sequence having one of the three root indexes. The three root indexes comprise a first index and a second index, and a sum of the first index and the second index corresponds to the length of the Zadoff-Chu sequence.
Abstract:
A sequence generation method for allowing a reception end to effectively detect a sequence used for a specific channel of an OFDM communication system, and a signal transmission/reception method using the same are disclosed. During the sequence generation, an index is selected from among the index set having the conjugate symmetry property between indexes, and a specific part corresponding to the frequency “0” is omitted from a transmitted signal. In addition, a reception end can calculate a cross-correlation value between a received (Rx) signal and each sequence using only one cross-correlation calculation based on the conjugate symmetry property.
Abstract:
Disclosed is a data transmission method in a mobile communication system. The data transmission method through a code sequence in a mobile communication system includes grouping input data streams into a plurality of blocks consisting of at least one bit so as to map each block to a corresponding signature sequence, multiplying a signature sequence stream, to which the plurality of blocks are mapped, by a specific code sequence, and transmitting the signature sequence stream multiplied by the specific code sequence to a receiver.
Abstract:
A method and device for transmitting uplink control signals in a wireless communication system, the method including: reserving a preassigned scheduling request (SR) physical uplink control channel (PUCCH) resource used for transmission of a SR; determining a frequency domain sequence and an orthogonal sequence based on the preassigned SR PUCCH resource; spreading an ACK/NACK for Hybrid Automatic Repeat Request (HARQ) with the frequency domain sequence and the orthogonal sequence to generate a mapped sequence; and transmitting the mapped sequence.