摘要:
An electroplating bath, a system, a process for, and the article obtained from, depositing a zinc-nickel ternary or higher alloy, a) zinc ions; b) nickel ions; and c) one or more ionic species selected from ions of Te+4, Bi+3 and Sb+3, and in some embodiments, further including one or more additional ionic species selected from ions of Bi+3, Sb+3, Ag+1, Cd+2, Co+2, Cr+3, Cu+2, Fe+2, In+3, Mn+2, Mo+6, P+3, Sn+2 and W+6. In some embodiments, the system includes a divider forming a cathodic chamber and an anodic chamber, with the electroplating bath in the cathodic chamber only. In various embodiments, the zinc-nickel ternary and higher alloys may provide improved properties to the conductive substrates upon which the alloys are deposited.
摘要:
The present invention relates to an aqueous plating bath for electrodeposition of tin-zinc alloys comprising at least one bath-soluble stannous salt, at least one bath soluble zinc salt, and a quaternary ammonium polymer selected from a ureylene quaternary ammonium polymer, an iminoureylene quaternary ammonium polymer or a thioureylene quaternary ammonium polymer. The plating baths also may contain one or more of the following additives: hydroxy polycarboxylic acids or salts thereof such as citric acid; ammonium salts; conducting salts; aromatic carbonyl-containing compounds; polymers of aliphatic amines such as a poly(alkyleneimine); and hydroxyalkyl substituted diamines as metal complexing agents. The plating baths of this invention deposit a bright and level deposit, and they can be adapted to provide plated alloys having high tin concentration over a wide current density range.
摘要:
A composition of matter for electrolytically depositing a tin layer on an iron containing-substrate is disclosed comprising an acidic aqueous mixture of:(a) a stannous tin halide; and(b) a salt having(1) an alkaline cation, and(2) an oxygen-containing inorganic acid anion reducible to a lower oxidation state.The salt is selected to minimize oxidation of Sn (II) to Sn (IV). An electrolytic cell for electrolytically depositing a tin layer on an iron-containing substrate is also disclosed, where the cell has an electrolyte comprising the foregoing composition. The overall cell potential of the cell is decreased, and the free energy increased, compared to an electrolytic cell without the salt. A process is disclosed for depositing a tin layer on an iron containing substrate comprising electrolytically coating the substrate with the composition, or coating the substrate employing the foregoing electrolytic cell. A product made by any of the foregoing processes is also described.
摘要:
An aqueous acidic plating bath for electrodeposition of tin, lead or tin-lead alloys on a substrate is described. The plating baths are free of fluoride and fluoborate ions and comprise (A) at least one bath-soluble metal salt selected from the group consisting of a stannous salt, a lead salt, or a mixture of stannous and lead salts, (B) at least one alkane sulfonic acid or alkanolsulfonic acid, (C) at least one surfactant, (D) an effective amount of at least one primary brightening agent selected from the group consisting of halogen substituted and dialkoxy and trialkoxy substituted benzaldehydes, (E) an effective amount of a secondary brightening agent which is at least one lower aliphatic aldehyde, and (F) an effective amount of an auxiliary brightening agent which is at least one of the group consisting of aniline and the amino-, carboxy-, halo-, alkyl- or alkoxy-substituted anilines. Methods for the electrodeposition of tin, lead, or tin-lead alloys from such baths also are described.
摘要:
Surfactants made by the successive ethoxylation and propoxylation of diamines are effective in providing a fine-grain tin coating in high-speed strip-steel plating operations under conditions of high current density. Surfactants prepared by successive propoxylation and ethoxylation are also effective.
摘要:
A process is provided for the electrodeposition of alloys of tin and lead by passing electrical current through an anode, an aqueous acidic plating solution and a cathode, wherein the aqueous acidic plating bath includes at least one organic compound having a formula ##STR1## wherein X=O, S, or NH and R.sub.2 and R.sub.3 are H, or lower alkyl and R.sub.1 is ##STR2## .