摘要:
An apparatus, system and method provides electrical power in a subterranean well. A radioisotope thermoelectric generator may be positioned and installed in a downhole location in a wellbore. The location of the radioisotope thermoelectric generator may be within a completion string. A radioisotope thermoelectric generator comprises a core having a radioisotope for producing heat, and a thermocouple. The thermocouple comprises at least two different metals, and is positioned adjacent to the core. The radioisotope thermoelectric generator flows heat from the core to the thermocouple to produce electricity that may be stored in an energy storage device, or used to power a component. The produced electrical power may be employed to activate downhole sensors, valves, or wireless transmitters associated with the operation and production of an oil or gas well.
摘要:
An apparatus, system and method provides electrical power in a subterranean well. A radioisotope thermoelectric generator may be positioned and installed in a downhole location in a wellbore. The location of the radioisotope thermoelectric generator may be within a completion string. A radioisotope thermoelectric generator comprises a core having a radioisotope for producing heat, and a thermocouple. The thermocouple comprises at least two different metals, and is positioned adjacent to the core. The radioisotope thermoelectric generator flows heat from the core to the thermocouple to produce electricity that may be stored in an energy storage device, or used to power a component. The produced electrical power may be employed to activate downhole sensors, valves, or wireless transmitters associated with the operation and production of an oil or gas well.
摘要:
The present invention is embodied in systems and methods for mitigating temperature-related pressure buildup in the trapped annulus of an oil or gas well, wherein such systems and methods employ production and/or tieback casing having one or more pressure mitigating chambers, and wherein such chambers make use of pistons, valves, and burst disks to mitigate pressure increases within the annulus.
摘要:
A wirelessly controlled active inflow control valve system. The valve system includes at least one downhole zonal production control unit. The at least one zonal production control unit includes a valve configured to control an inflow of fluid, at least one sensor configured to sense at least one parameter, and a central downhole control and data acquisition unit communicatively coupled to the valve and the at least one sensor. The central downhole control and data acquisition unit sends an actuation signal to the valve and receives at least one data output from the at least one sensor. The central downhole control and data acquisition unit transmits the at least one data output to a surface control and data acquisition unit via a wireless communication protocol and receives a control command from the surface downhole control and data acquisition unit via the wireless communication protocol.
摘要:
An autonomous active flow control valve system for regulating and controlling flow across well segments is disclosed. In one example embodiment, the valve system includes a central control unit and one or more flow control devices communicatively coupled to the central control unit. Each flow control device includes at least one valve and at least one sensor for sensing various well or flow parameters. The central control unit receives sensor data from the sensor and controls the valve according to a pre-programmed control protocol. The valve may be opened, closed, and adjusted in response to detected well or flow parameters in order to maintain a desirable flow profile across well segments either in production or injection well.
摘要:
The present invention is generally directed to systems and methods for mitigating temperature-related pressure buildup in the trapped annulus of an oil or gas well, wherein such systems and methods employ production and/or tieback casing having one or more pressure mitigating chambers., and wherein such chambers make use of pistons, valves, and burst disks to mitigate pressure increases within the annulus. Such systems and methods can provide advantages over the prior art, particularly with respect to offshore wells.
摘要:
Pressure within a subsea well is managed as temperature within the well fluctuate. The management of the pressure mitigates stress to the structure of the well caused by the pressure. To manage the pressure, fluid is received from and/or provided to the well to reduce and/or increase pressure within the well.
摘要:
The present invention is directed to systems and methods for initiating annular obstructions in wells used in, or in support of, enhanced oil recovery operations—particularly enhanced oil recovery (EOR) efforts involving steam injection (e.g., steam flooding). In at least some instances, system and method embodiments of the present invention utilize one or more passively-activated annular obstruction devices (and/or hybrid active/passive devices) for inducing annular obstruction, wherein the associated passive or hybrid activation is at least partially controlled by thermal means such that it can be deemed to be thermally-directed or thermally-controlled. Such thermally-directed passive activation can afford considerably more control over the annular obstruction process and, correspondingly, over the overall steam injection into the formation and associated reservoir—thereby providing more efficient recovery of hydrocarbons.
摘要:
An autonomous active flow control valve system for regulating and controlling flow across well segments is disclosed. In one example embodiment, the valve system includes a central control unit and one or more flow control devices communicatively coupled to the central control unit. Each flow control device includes at least one valve and at least one sensor for sensing various well or flow parameters. The central control unit receives sensor data from the sensor and controls the valve according to a pre-programmed control protocol. The valve may be opened, closed, and adjusted in response to detected well or flow parameters in order to maintain a desirable flow profile across well segments either in production or injection well.
摘要:
The present invention is directed to systems and methods for initiating annular obstructions in wells used in, or in support of, enhanced oil recovery operations—particularly enhanced oil recovery (EOR) efforts involving steam injection (e.g., steam flooding). In at least some instances, system and method embodiments of the present invention utilize one or more passively-activated annular obstruction devices (and/or hybrid active/passive devices) for inducing annular obstruction, wherein the associated passive or hybrid activation is at least partially controlled by thermal means such that it can be deemed to be thermally-directed or thermally-controlled. Such thermally-directed passive activation can afford considerably more control over the annular obstruction process and, correspondingly, over the overall steam injection into the formation and associated reservoir—thereby providing more efficient recovery of hydrocarbons.