Abstract:
A dust collector for electric power tool includes a body case, a dust box, a nozzle, and a dust collecting route. The dust box includes a dust-collector-side exhaust port and is installable on an electric power tool. The dust box internally includes a filter. The nozzle is disposed to the body case and includes a suction opening on a front end. The dust collecting route is disposed from the suction opening to the dust-collector-side exhaust port passing through the filter. The dust box includes a box main body that includes a vibration applicator configured to directly apply a vibration to the dust box by a rotating operation of an operation knob.
Abstract:
A power tool, such as a rotary hammer, includes a housing, an output shaft for mounting a tool accessary and a motor having a motor shaft that generates a rotational output for rotating and linearly hammering the output shaft. The rotational output of the motor shaft is coupled to the output shaft via a driving mechanism that includes a hammer mechanism. An intervening member is axially movable relative to the motor shaft and is operably coupled between the motor shaft and the hammer mechanism. The hammer mechanism and the output shaft are supported by a movable support that is axially movable relative to the housing. Because the output shaft and the driving mechanism are movable relative to the motor and the housing, which preferably includes handle, via the intervening member and the movable support during hammering operations, vibration generated during hammering operations can be dampened before reaching the housing.
Abstract:
Appropriate control is performed in accordance with the state of a power tool and/or a dust collection attachment. A dust collection system for a power tool includes a hammer drill to hold a bit, a dust collection attachment connected to the hammer drill, and a dust collection controller that controls the operation of the hammer drill and/or the dust collection attachment in accordance with the specifications of the hammer drill and/or the dust collection attachment.
Abstract:
An effective technique for increasing performance of an auxiliary handle which is attached to a power tool is provided. The auxiliary handle has a grip part, a grip holding part, a mounting part and a support part. The grip holding part is disposed between the grip part and the support part in a longitudinal direction of the auxiliary handle. When the auxiliary handle is attached to a power tool body, the grip part and the grip holding part are held so as to be movable with respect to the mounting part with the support part as a fulcrum.
Abstract:
A dust collection cup allows a bit tip to be viewable without being detached or replaced. A dust collection cup is attachable to a front cylindrical portion of a hammer drill. The dust collection cup in an attached state allows a bit attached to the front cylindrical portion to extend through the dust collection cup. The dust collection cup includes an attachment attachable to the front cylindrical portion, and a body connectable to the attachment. The body includes an extendable unit including at least a portion in an axial direction retaining a predetermined length.
Abstract:
An engaging portion of a driver has an engaging portion front surface coplanar with a striking portion front surface and an engaging portion rear surface coplanar with a striking portion rear surface. The engaging portion has an engagement surface that is parallel to a rotation axis of a lifter.
Abstract:
A power tool includes a motor, a driving mechanism, a main housing, a handle housing, a first guide part and a second guide part. The handle housing is movable relative to the main housing at least in a front-rear direction. The first and second guide parts are configured to guide relative sliding between the main housing and the handle housing in the front-rear direction. Each of the first guide part and the second guide part includes a first engagement part and a second engagement part engaged with each other to be slidable in the front-rear direction. The main housing has the first engagement part. The handle housing has the second engagement part. The second guide part is spaced apart from the first guide part and located rearward of the first guide part in the front-rear direction.
Abstract:
A power tool includes a motor having a rotatable motor shaft, a first intermediate shaft, and a second intermediate shaft extending in parallel to the first intermediate shaft. An output shaft removably holds a tool accessory and has a driving axis. A motion-converting mechanism converts rotation of the first intermediate shaft only into linear reciprocating motion and thereby hammers the tool accessory along the driving axis. A rotation-transmitting mechanism transmits rotation of the second intermediate shaft to the output shaft and thereby only rotationally drives the output shaft around the driving axis.
Abstract:
A movable support at least partially supports a final output shaft and a driving mechanism, and is integrally movable relative to a housing in an axial direction of a driving axis. A biasing member biases the movable support toward a front side in the axial direction. A first guide shaft extends in the axial direction and slidably guides the movement of the movable support in the axial direction. At least one intermediate shaft rotates in response to rotation of a motor shaft and transmit power of the motor to the driving mechanism. At least one bearing supports an end portion of the at least one intermediate shaft is located in the front side in the axial direction. A single metal support is immovable relative to the housing and supports the at least one bearing. The single metal support has a first hole for partially receiving the first guide shaft.
Abstract:
A dust collector for an electric power tool includes a main body case, a dust box, a sliding portion, and a dust collecting route. The main body case includes an exhaust port, the main body case being configured to be installed on an electric power tool. The dust box internally includes a filter. The sliding portion is disposed on the main body case. The sliding portion has a front end on which a nozzle with a suction opening is disposed. The sliding portion is slidable in a front-rear direction. The dust collecting route is from the suction opening to the exhaust port passing through the filter. The main body case includes a guiding portion through which the sliding portion passes, and the guiding portion allows the sliding portion to project rearward when the sliding portion slides.