Abstract:
A preamble, a first portion of a data payload, a midamble, and a second portion of the data payload of a single data unit are generated. The midamble is to be transmitted subsequent to transmission of the first portion of the data payload and prior to transmission of the second portion of the data payload. The midamble includes an indication of at least one characteristic of the data payload such as an indication of a size of the second portion of the data payload, or whether or not the data payload includes one or more other portions in addition to the first and second portions. A network interface of a communication device is configured to generate the preamble, the first and second portions of the data payload, and the midamble.
Abstract:
Systems and techniques relating to wireless devices are described. A described system includes a first radio unit configured to receive communication signals that include one or more signals indicative of a first physical layer frame of a data packet, and produce a first output based on the first physical layer frame; a second radio unit configured to receive communication signals that include one or more signals indicative of a second physical layer frame of the data packet, and produce a second output based on the second physical layer frame, the one or more signals indicative of the first physical layer frame are concurrently received with the one or more signals indicative of the second physical layer frame; a deparser configured to combine outputs, including the first and second outputs, to produce a combined output; and a controller configured to resolve the data packet based on the combined output.
Abstract:
A system and method of beamforming may reduce feedback requirements. In some implementations, a beamforming technique may employ a diagonal matrix as a beamforming matrix. In some antenna phase beamforming strategies, a diagonal beamforming matrix in which the diagonal elements have a constant magnitude may be employed. Accordingly, a beamforming system may be utilized with few feedback information bits being transmitted from the beamformee; such a system may also minimize or eliminate power fluctuations among multiple transmit antennae.
Abstract:
Systems and methods for removing DC offset from a signal are provided. A radio frequency signal is received at a receiver. The radio frequency signal is converted into a digital signal including a periodic component with a period. A carrier frequency offset is removed from the digital signal to generate a frequency-shifted digital signal. The frequency-shifted digital signal is filtered to remove a DC offset in the digital signal. The filtering includes applying a moving average filter matched to the period to remove the periodic component from the frequency-shifted digital signal. The moving average filter generates a set of average values based on the frequency-shifted digital signal. The filtering also includes taking a difference between consecutive values of the set of average values to determine the DC offset, where the DC offset is introduced at the receiver.
Abstract:
Systems, methods, and other embodiments associated with a hybrid beamforming architecture are described. According to one embodiment, a first wireless device includes a transmitter and a baseband beamforming processing unit. The baseband beamforming processing unit includes a steering matrix calculation unit and a steering matrix cache. The steering matrix calculation unit is configured to derive a steering matrix from channel related information in a first packet received from a second wireless device. The steering matrix includes weights. The steering matrix cache is configured to (i) store the steering matrix derived from the channel related information, and (ii) provide the weights from the steering matrix to the transmitter. The transmitter is configured to, based on the weights from the steering matrix, perform transmit beamforming on a second packet being transmitted to the second wireless device from the first wireless device.
Abstract:
Methods and apparatus for processing frames in wireless networks is disclosed. In one implementation, the apparatus includes an antenna configured to (i) receive a first data frame, wherein the first data frame includes a field that identifies a parameter associated with a second data frame, and (ii) subsequent to receiving the first data frame, receive the second data frame. In one implementation, the apparatus further includes a processing module configured to (i) process the first data frame to identify the parameter associated with the second data frame, and (ii) based on identifying the parameter associated with the second data frame, process the second data frame.
Abstract:
A first network device including a receiver, a steering module, and a transmitter. The receiver is configured to receive a first signal from a second network device. The first signal is transmitted from the second network device using a first modulation system. The steering module is configured to generate a steering matrix based on the first signal. The transmitter is configured to transmit a second signal using the steering matrix to the second network device. The second signal is transmitted using a second modulation system. The first and second modulation schemes are selected from a group consisting of (i) a plurality of single carrier based modulation schemes and (ii) a plurality of orthogonal frequency division multiplexing based modulation schemes. The second modulation system is different from the first modulation system.
Abstract:
The present disclosure includes systems and techniques relating to wireless local area network devices. Systems and techniques include accessing a data stream intended for transmission to a single wireless communication device, multiplexing the data stream onto two or more radio pathways to produce a data packet, operating the two or more radio pathways to respectively use two or more groups of orthogonal frequency division multiplexing (OFDM) subcarriers to generate two or more different portions of the data packet, the two or more groups of OFDM subcarriers being respectively assigned to two or more frequency bands, and transmitting the data packet to the single wireless communication device by concurrent transmissions of the two or more different portions via the two or more frequency bands.
Abstract:
Systems and methods for detecting data in a multiple input/multiple output signal. The method includes receiving a first signal associated with a first data value and a second signal associated with a second data value. A distance value between the received second signal and each possible second data value is calculated. Coordinates for a hypothetical first signal in light of a first possible second data value are calculated, and the first coordinate value is quantized to a nearest constellation point. A distance value between the received second signal and each possible second data value is calculated using the calculated constellation points. A determination is made of a log-likelihood ratio based on the determined distance values.
Abstract:
In a communication network, a first communication device obtains respective channel estimate matrices of respective communication channels between i) the first communication device and ii) respective second communication devices. The first communication device generates respective steering matrices for use in communicating with the respective second communication devices, including generating each steering matrix to project to a null-space of a space spanned by channel estimate matrices corresponding to others of the second communication devices. The first communication device utilizes the respective steering matrices to simultaneously transmit respective signals to the respective second communication devices.