摘要:
When a lane-width-direction lateral position (X2obst+X0) of a vehicle (MM) reaches a predetermined control start position (60) being a lane-width-direction lateral position (X2obst+X0) serving as an approach prevention indicator for the vehicle (MM), a control start is determined and a yaw moment (Ms) toward the center of a vehicle traveling lane (200) is applied to the vehicle (MM) to control the vehicle (MM). Then, when the lane-width-direction lateral position (X2obst+X0) of the vehicle (MM) moves from the outside to the inside of the control start position (60), the determination of control start is suppressed for a predetermined period, compared to a period before the movement to the inside of the control start position (60).
摘要:
When a lane-width-direction lateral position (X2obst+X0) of a vehicle (MM) reaches a predetermined control start position (60) being a lane-width-direction lateral position (X2obst+X0) serving as an approach prevention indicator for the vehicle (MM), a control start is determined and a yaw moment (Ms) toward the center of a vehicle traveling lane (200) is applied to the vehicle (MM) to control the vehicle (MM). Then, when the lane-width-direction lateral position (X2obst+X0) of the vehicle (MM) moves from the outside to the inside of the control start position (60), the determination of control start is suppressed for a predetermined period, compared to a period before the movement to the inside of the control start position (60).
摘要:
A driving assisting system for a vehicle comprises a side obstacle detector configured to detect an obstacle present in an obstacle detection area; an obstacle approach prevention controller configured to implement an obstacle approach prevention control which assists an approach prevention for preventing the vehicle from approaching an obstacle detected by the side obstacle detector; an overtaking state detector configured to detect an overtaking state which is at least one of a first state where the vehicle is overtaking the obstacle detected by the side obstacle detector and a second state where the vehicle is estimated to overtake the obstacle. The overtaking state detector is configured to detect the overtaking state based at least on (i) a distance between the vehicle and the obstacle, (ii) a speed of the vehicle relative to the obstacle, and (iii) a detection angle of the obstacle relative to the vehicle.
摘要:
A driving control device according to the present invention activates a control for suppressing sideways movement of a vehicle towards a side object, when the side object present to the side of the vehicle as well as towards the rear of the vehicle is detected. Also, the activation of the control is suppressed when, in the absence of detection of the side object, the vehicle starts entering an adjacent lane in order to change lanes.
摘要:
An overtaking state is detected which is at least one of a first state where an own vehicle (MM) is overtaking an obstacle (SM) in a posterolateral direction of the own vehicle (MM) and a second state where the own vehicle (MM) is estimated to overtake the obstacle (SM). In the implementation of an obstacle access prevention control for preventing the own vehicle (MM) from accessing the obstacle (SM) present in the posterolateral direction of the own vehicle (MM), when a determination that the overtaking state is established is made based on the detecting, the obstacle access prevention control with respect to the obstacle (SM) is suppressed compared with when the determination that the overtaking state is established is not made.
摘要:
A driving control device according to the present invention activates a control for suppressing sideways movement of a vehicle towards a side object, when the side object present to the side of the vehicle as well as towards the rear of the vehicle is detected. Also, the activation of the control is suppressed when, in the absence of detection of the side object, the vehicle starts entering an adjacent lane in order to change lanes.
摘要:
Disclosed herein are embodiments of controllers and methods of control to enable prevention of departure of vehicle even when the degree of the tendency of the vehicle to depart from the travel lane is low. One such controller comprises a lane departure tendency determining device configured to determine a departure tendency of the vehicle to depart from a travel lane, a yaw moment computing device configured to compute a reference yaw moment based on the departure tendency, a yaw moment correction device configured to compute a target yaw moment based on at least the reference yaw moment and a controller configured to apply the target yaw moment to the vehicle. When the reference yaw moment is lower than a prescribed threshold, the yaw moment correction device gradually increases the target yaw moment over time until the target yaw moment is greater than the prescribed threshold.
摘要:
A vehicle driving control apparatus is provided with a lane detecting device, a future position estimating device and a vehicle control device. The lane detecting device detects a lane marker of a lane. The future position estimating device estimates a future transverse position of a host vehicle after a prescribed amount of time. The vehicle control device executes a vehicle control such that a yaw moment is imparted to the host vehicle toward a middle of the lane. The yaw moment is imparted upon determining that the future transverse position is positioned laterally farther toward an outside of the lane from the middle of the lane than a prescribed widthwise lane position that is determined in advance using the lane marker as a reference. The vehicle control device suppresses an impartation of the yaw moment device when a recognition degree of the lane marker is lower than a prescribed value.
摘要:
[Object] An object of the present invention is to restrict an unnecessary control intervention at a scene where a vehicle avoids an obstacle etc. ahead of the vehicle by steering.[Means to Solve] A lateral object that exists on a side of the vehicle is detected (step S3), a later-arriving lateral position Xf at which the vehicle arrives after a lapse of a headway time Tt, with respect to a traffic lane, is estimated, and when the later-arriving lateral position Xf reaches a predetermined threshold value XL under the condition in which the lateral object is detected, a lane change of the vehicle in a direction to a side of the lateral object is suppressed. When detecting that the vehicle moves laterally in a direction opposite to a side of a side vehicle, an avoidance flag is set to Fa=1 (step S6). Subsequently, when the vehicle starts a lateral movement in a direction to the side of the side vehicle, a return flag is set to Fr=1 (step S7). When the return flag is set to Fr=1 in this way, a suppression flag is set to F=0 until a setting time Tm elapses, then the suppression of the lateral movement is forbidden (step S9).
摘要:
When an obstacle on either of the two sides of a vehicle is detected, the future position of the vehicle after a prescribed time is predicted. When the future predicted vehicle position reaches a prescribed lateral position in the width direction of the lane, control start is determined such that obstacle avoiding control is carried out to prevent the approach of the vehicle to the obstacle. When an intention of the driver to enter the lane of the obstacle is detected, the start timing for obstacle avoiding control is shortened.