Abstract:
Various embodiments of a tissue cutting device and methods for using are described. In some variations devices include an elongate tube having a proximal end and a distal end and a central axis extending from the proximal end to the distal end; a first annular element at the distal end of the elongate tube, the first annular element having a cutting portion at its distal; and a second annular element at the distal end of the elongate tube and concentric with the first annular element, the second annular element having a cutting portion at its distal end, the first and second annular elements being rotatable relative to one another to cause the first annular element and the second annular element to pass each other to shear tissue.
Abstract:
Forming multi-layer 3D structures involving the joining of at least two structural elements, at least one of which is formed as a multi-layer 3D structure, wherein the joining occurs via one of: (1) elastic deformation and elastic recovery, (2) relative deformation of an initial portion of at least one element relative to another portion of the at least one element until the at least two elements are in a desired retention position after which the deformation is reduced or eliminated, or (3) moving a retention region of one element into the retention region of the other element, without deformation of either element, along a path including a loading region of the other element and wherein during normal use the first and second elements are configured relative to one another so that the loading region of the second element is not accessible to the retention region of the first element.
Abstract:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of the tip material around carefully sized and placed etching shields, via hot pressing, and the like.
Abstract:
Pin probes and pin probe arrays are provided that allow electric contact to be made with selected electronic circuit components. Some embodiments include one or more compliant pin elements located within a sheath. Some embodiments include pin probes that include locking or latching elements that may be used to fix pin portions of probes into sheaths. Some embodiments provide for fabrication of probes using multi-layer electrochemical fabrication methods.
Abstract:
Pin probes and pin probe arrays are provided that allow electric contact to be made with selected electronic circuit components. Some embodiments include one or more compliant pin elements located within a sheath. Some embodiments include pin probes that include locking or latching elements that may be used to fix pin portions of probes into sheaths. Some embodiments provide for fabrication of probes using multi-layer electrochemical fabrication methods.
Abstract:
Forming multi-layer 3D structures involving the joining of at least two structural elements, at least one of which is formed as a multi-layer 3D structure, wherein the joining occurs via one of: (1) elastic deformation and elastic recovery, (2) relative deformation of an initial portion of at least one element relative to another portion of the at least one element until the at least two elements are in a desired retention position after which the deformation is reduced or eliminated, or (3) moving a retention region of one element into the retention region of the other element, without deformation of either element, along a path including a loading region of the other element and wherein during normal use the first and second elements are configured relative to one another so that the loading region of the second element is not accessible to the retention region of the first element.