摘要:
In a production process of an organic-inorganic hybrid glassy material, the invention relates to a process for producing an organic-inorganic hybrid glassy material, characterized in that the process comprises at least the three steps of producing a gel body by a sol-gel method; melting by heating; and aging, and it relates to an organic-inorganic hybrid glassy material produced by this process.
摘要:
In a production process of an organic-inorganic hybrid glassy material, the invention relates to a process for producing an organic-inorganic hybrid glassy material, characterized in that the process comprises at least the three steps of producing a gel body by a sol-gel method; melting by heating; and aging, and it relates to an organic-inorganic hybrid glassy material produced by this process.
摘要:
In the production of an organic-inorganic hybrid glassy material using raw materials which are used in a sol-gel process as starting materials, the present invention relates to a process for producing an organic-inorganic hybrid glassy material, which is characterized in that, there is a heating reaction step between a mixing step and a melting step of the starting materials and there is further an aging step after the melting step. In accordance with the present invention, an organic-inorganic hybrid glassy material satisfying both heat resistance as well as airtight property and low-melting characteristic, which has been believed to be very difficult to produce, is now able to be produced in a very shorter period than before.
摘要:
Disclosed is an organic-inorganic hybrid glassy material characterized in that change of Abbe number does not exceed 1.5 in a temperature range of 20-150° C. (a difference between the maximum value and the minimum value is 1.5 or less). This organic-inorganic hybrid glassy material may have a characteristic that transmittance in a wavelength range of 300-800 nm is not lowered by 5% or greater to a laser light irradiation of a wavelength of 330-380 nm.
摘要:
In the production of an organic-inorganic hybrid glassy material using raw materials which are used in a sol-gel process as starting materials, the present invention relates to a process for producing an organic-inorganic hybrid glassy material, which is characterized in that, there is a heating reaction step between a mixing step and a melting step of the starting materials and there is further an aging step after the melting step. In accordance with the present invention, an organic-inorganic hybrid glassy material satisfying both heat resistance as well as airtight property and low-melting characteristic, which has been believed to be very difficult to produce, is now able to be produced in a very shorter period than before.
摘要:
There is provided a process for producing an organic-inorganic hybrid glassy material, including the sequential steps of (a) concentrating a starting sol of an organic-inorganic hybrid glassy material, thereby yielding a precursor material having meltability; (b) melting the precursor material; (c) subjecting a product of the step (b) to a heating treatment under reduced pressure; and (d) subjecting a product of the step (c) to a high-temperature heat treatment at 300° C. or higher.
摘要:
There is provided a process for producing an organic-inorganic hybrid glassy material, including the sequential steps of (a) concentrating a starting sol of an organic-inorganic hybrid glassy material, thereby yielding a precursor material having meltability; (b) melting the precursor material; (c) subjecting a product of the step (b) to a heating treatment under reduced pressure; and (d) subjecting a product of the step (c) to a high-temperature heat treatment at 300° C. or higher.
摘要:
A subject for the invention relates to providing a positive active material for lithium ion secondary batteries which attains a high discharge capacity and is excellent in rate characteristics and cycle characteristics. A feature of the invention resides in that a lithium-nickel-manganese composite oxide which has a composition represented by LixNiyMnzO2 wherein x is 1+1/9±(1+1/9)/10, y is 4/9±(4/9)/10, and z is 4/9±(4/9)/10, in particular, represented by the general formula Li[Ni0.5-0.5XMn0.5-0.5XLiX]O2 wherein X satisfies 0.05≦X≦0.11, and has a crystal structure belonging to the monoclinic system and having a space group of C12/ml (No. 12) is used as a positive-electrode material. The lithium-nickel-manganese composite oxide preferably is one in which in X-ray powder diffractometry using a Cu—Kα ray, the peak intensity ratio I(002)/I(13-3) between the (002) plane and the (13-3) plane in terms of Miller indexes hkl on the assumption of belonging to C12/ml (No. 12) of the monoclinic system is 1.35 or higher.
摘要翻译:本发明的主题涉及提供一种获得高放电容量并且具有优异的速率特性和循环特性的锂离子二次电池的正极活性材料。 本发明的特征在于,具有由Li x Mn y Mn z O 2表示的组成的锂镍锰复合氧化物 其中x为1 + 1/9±(1 + 1/9)/ 10,y为4/9±(4/9)/ 10,z为4/9±(4 / 9)/ 10,特别是由通式Li [Ni 0.5-0.5X Mn 0.5-0.5XLi X]表示, 其中X满足0.05 <= X <= 0.11,并且具有属于单斜晶系并且具有C12 / ml(12号)的间隔基团的晶体结构用作正 - 电极材料。 锂镍锰复合氧化物优选使用Cu-Kα射线的X射线粉末衍射法,峰强度比I(002)/ 假设属于单斜晶体的C12 / ml(12号),就米勒指数hk1而言(002)面和(13-3)面之间的(13-3) 系统是1.35以上。
摘要:
The invention provides granular secondary particles of a lithium-manganese composite oxide which are granular secondary particles made up of aggregated crystalline primary particles of a lithium-manganese composite oxide and have many micrometer-size open voids therein, the open voids having an average diameter in the range of from 0.5 to 3 μm and the total volume of the open voids being in the range of from 3 to 20 vol. % on average based on the total volume of the granules. These particles are suitable for use as a constituent material for non-aqueous electrolyte secondary batteries showing high-output characteristics. The invention further provides a process for producing the granular secondary particles of a lithium-manganese composite oxide which includes spray-drying a slurry prepared by dispersing a fine powder of a manganese oxide, a lithium source, an optional compound containing at least one element selected from Al, Co, Ni, Cr, Fe, and Mg, and an agent for open-void formation to thereby granulate the slurry and then calcining the granules at a temperature of from 700 to 900° C.
摘要:
There is disclosed a thermosetting organic-inorganic hybrid transparent material which is characterized by including a main material that has a siloxane skeleton modified with an organic substituent, and a curing agent. The main material and the curing agent are mixed, and the mixture is coated on an adherend and cured by heating. With these steps, a transparent bonding/sealing is achieved.