Abstract:
An automated seed sampler system includes an orientation system configured to orient a seed, and a sampling station configured to remove tissue from the oriented seed. In addition, a method for removing tissue from seeds includes positioning multiple seeds together in a desired orientation in a seed transport subsystem, and removing tissue from the oriented seeds while the seeds are in the seed transport subsystem.
Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
An automated seed sampler system includes an imaging device for obtaining images of seeds, an orienting device for orienting the seeds based on the images, and a sampling station for removing tissue from the oriented seeds. In some aspects, the system also includes a transport subsystem for supporting the oriented seeds and conveying the oriented seeds to the sampling station. A method for removing tissue from seeds includes imaging the seeds, orienting the seeds based on image information obtained from the seeds, and removing tissue from the oriented seeds. In some aspects, the method also includes transporting the oriented seeds in a transport subsystem to a sampling station for removing the tissue from the oriented seeds, and/or collecting the tissue removed from the oriented seeds so that a one-to-one correspondence exists between the tissue and the sampled seeds, and/or analyzing the tissue for characteristics indicative of genetic and/or chemical traits.
Abstract:
An automated seed sampler system includes an imaging device for obtaining images of seeds, an orienting device for orienting the seeds based on the images, and a sampling station for removing tissue from the oriented seeds. In some aspects, the system also includes a transport subsystem for supporting the oriented seeds and conveying the oriented seeds to the sampling station. A method for removing tissue from seeds includes imaging the seeds, orienting the seeds based on image information obtained from the seeds, and removing tissue from the oriented seeds. In some aspects, the method also includes transporting the oriented seeds in a transport subsystem to a sampling station for removing the tissue from the oriented seeds, and/or collecting the tissue removed from the oriented seeds so that a one-to-one correspondence exists between the tissue and the sampled seeds, and/or analyzing the tissue for characteristics indicative of genetic and/or chemical traits.
Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
An automated seed sampler system includes an orientation system configured to orient a seed, and a sampling station configured to remove tissue from the oriented seed. In addition, a method for removing tissue from seeds includes positioning multiple seeds together in a desired orientation in a seed transport subsystem, and removing tissue from the oriented seeds while the seeds are in the seed transport subsystem.
Abstract:
An automated seed sampler system for removing tissue from seeds includes an orientation system configured to orient seeds in a desired orientation, a sampling station configured to remove tissue from each of the oriented seeds, a sample collection subsystem configured to receive the tissue removed from each of the oriented seeds, and a seed collection subsystem configured to receive each of the seeds from which the tissue is removed. The sample collection subsystem and the seed collection subsystem are configured to facilitate a one-to-one correspondence between the seeds received at the seed collection subsystem and the tissue removed from the seeds and received at the sample collection subsystem.
Abstract:
An automated method for operating an automated seed sampling system having a seed loading station, a seed transport subsystem, and a seed sampling station generally includes sensing whether individual seeds are successfully isolated from a bulk of seeds at the seed loading station, and sensing whether the isolated seeds are properly positioned by the seed transport subsystem adjacent the seed sampling station in preparation for removing tissue from the isolated seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.
Abstract:
An automated method for analyzing seeds generally includes collecting image data from individual seeds using a seed sampling system, determining at least one characteristic of each of the individual seeds based on the collected image data, and removing tissue from each of the individual seeds using the seed sampling system. The method also includes, prior to removing the tissue sample from each of the individual seeds, adjusting at least one operational parameter of the seed sampling system based on the at least one characteristic of the seed from which the tissue is to be removed to thereby allow for generally consistent removal of tissue from each of the individual seeds. In some aspects, the method further includes analyzing the tissue removed from the seeds for presence or absence of at least one characteristic, and selecting seeds based on presence or absence of the at least one characteristic.