摘要:
Provided is a method of manufacturing a reflective color filter. According to the method, the reflective color filter may reflect light having a desired wavelength by controlling the distance between colloidal particles. The method of manufacturing a reflective color filter may include forming colloidal particles having a charged surface, forming colloidal crystals by controlling distances between the colloidal particles, and forming a photonic crystal composite by fixing the colloidal crystals having the colloidal particles.
摘要:
Provided is a method of manufacturing a reflective color filter. According to the method, the reflective color filter may reflect light having a desired wavelength by controlling the distance between colloidal particles. The method of manufacturing a reflective color filter may include forming colloidal particles having a charged surface, forming colloidal crystals by controlling distances between the colloidal particles, and forming a photonic crystal composite by fixing the colloidal crystals having the colloidal particles.
摘要:
Provided are a reflective structure, a display apparatus including the reflective structure, and methods of manufacturing the reflective structure and the display apparatus. The reflective structure may include a reflective layer having a multiple uneven structure. The reflective layer may have a curved surface as a result of a plurality of first uneven portions, and wherein the curved surface may has a plurality of second uneven portions having a scale less than that of the first uneven portions. The plurality of first uneven portions may have a micro-scale size, and the plurality of second uneven portions may have a nano-scale size. The reflective layer may be arranged on a lower structure including a plurality of nanoparticles. A flexible material layer may be formed on the reflective layer.
摘要:
Provided are a reflective structure, a display apparatus including the reflective structure, and methods of manufacturing the reflective structure and the display apparatus. The reflective structure may include a reflective layer having a multiple uneven structure. The reflective layer may have a curved surface as a result of a plurality of first uneven portions, and wherein the curved surface may has a plurality of second uneven portions having a scale less than that of the first uneven portions. The plurality of first uneven portions may have a micro-scale size, and the plurality of second uneven portions may have a nano-scale size. The reflective layer may be arranged on a lower structure including a plurality of nanoparticles. A flexible material layer may be formed on the reflective layer.
摘要:
A method of preparing high refractive index nanoparticles includes adding a polymer stabilizer to a solvent, and forming high refractive index nanoparticles by adding high refractive index nanoparticle materials to the solvent and stirring the same. The high refractive index nanoparticle materials may have a refractive index equal to or greater than 1.8, and sizes of the high refractive index nanoparticles may be determined by adjusting a content of the polymer stabilizer to control an amount of the polymer stabilizer adsorbed to surfaces of the high refractive index nanoparticles.
摘要:
A method of preparing a monodisperse particle may include mixing at least two types of monomers in a solvent, placing an initiator in the solvent, and forming a particle having a copolymer shape by polymerizing the at least two types of monomers. The particle may have a size controlled by a content of the at least two types of monomers.
摘要:
Provided are poly(ferrocenyl)silane based network polymers, methods of preparing the same, and films including the poly(ferrocenyl)silane based network polymers. The network polymers have a steric network structure and are prepared by using a simplified process.
摘要:
Disclosed are conductive polymer inks and methods for forming the inks. The disclosed inks include a dispersion of conductive core/shell nanoparticles. The core/shell nanoparticles include a polymeric core and a shell formed of a conducting polymer. The inks can include a dispersion of the core/shell nanoparticles in a liquid carrier, such as an alcohol. The disclosed inks can be formulated to high viscosities and can be utilized in high-speed printing processes including rotogravure and flexographic printing processes. Products encompassed by the disclosure include polymer devices such as sensors, OFETs, RFID tags, printed circuit board, electrochromic devices, non-volatile memory devices, photovoltaics, and the like.
摘要:
A method of preparing a monodisperse particle may include mixing at least two types of monomers in a solvent, placing an initiator in the solvent, and forming a particle having a copolymer shape by polymerizing the at least two types of monomers. The particle may have a size controlled by a content of the at least two types of monomers.
摘要:
A method of preparing high refractive index nanoparticles includes adding a polymer stabilizer to a solvent, and forming high refractive index nanoparticles by adding high refractive index nanoparticle materials to the solvent and stirring the same. The high refractive index nanoparticle materials may have a refractive index equal to or greater than 1.8, and sizes of the high refractive index nanoparticles may be determined by adjusting a content of the polymer stabilizer to control an amount of the polymer stabilizer adsorbed to surfaces of the high refractive index nanoparticles.