Abstract:
A light-emitting-element mount substrate formed by relatively simple manufacturing steps, having a good heat release property, and having a high mechanical strength; and an LED device including the light-emitting-element mount substrate are provided. A substrate body of a light-emitting-element mount substrate is made of a low-resistance semiconductor (e.g., n-type silicon) substrate, and is divided into a first and second individual substrate bodies by an insulating layer. A first front-surface mounting electrode and a first external-connection electrode are formed on respective first and second major surfaces (e.g., front and back surfaces) of the first individual substrate body. A second front-surface mounting electrode and a second external-connection electrode are formed respective first and second major surfaces (e.g., front and back surfaces) of the second individual substrate body. The insulating layer has a shape different from a straight-line shape in plan view.
Abstract:
A dynamic sensor includes a weight having an H shape in a plan view. The weight includes a first weight portion and a second weight portion which have substantially rectangular parallelepiped shapes and are aligned in a short side direction at an interval and a bridge portion which connects the first and second weight portions and extends in the aligned direction. The bridge portion connects the first and second weight portions at an approximate center thereof in a long side direction. Supports are located in a region between the first and second weight portions where the bridge portion is not provided. The first weight portion is connected to a first support via a first beam and to a second support via a second beam. The second weight portion is connected to the first support via a third beam and to the second support via a fourth beam.
Abstract:
Banks, as well as a plurality of substantially recess-shaped cells defined by the banks, are provided in an image section formed in a gravure printing plate. Each of edge cells located along an outer edge of the image section is provided with a projecting portion that projects from a part of a base surface of that edge cell, and each projecting portion is distanced from the banks and located closer to the outer edge than the center of the corresponding edge cell. Preferably, the projecting portions and the banks that face the outer edge are positioned at a predetermined interval from the outer edge, and substantially frame-shaped recess portions that extend continuously along the outer edge are provided in the image section.
Abstract:
An acceleration sensor with improved impact resistance includes a beam portion connected to a supporting portion at a base side and connected to a weight portion at a top side. The beam portion has a T-shaped cross-section, and piezoresistors are located on an upper surface of the beam portion. The weight portion connects to a top of the beam portion and is arranged inside the supporting portion. A C-shaped slit is provided between the weight portion and the supporting portion so as to surround the weight portion. The weight portion includes an extended portion in which an end of a top surface layer on a side facing the beam portion extends out toward the beam portion beyond an end of the supporting substrate layer on a side facing the beam portion.
Abstract:
Banks, as well as a plurality of recess-shaped cells defined by the banks, are provided in an image section formed in a gravure printing plate. A projecting portion is provided in each of the cells so as to protrude from a part of the base surface of that cell. The projecting portions are in positions distanced from the banks. Like the banks, the projecting portions can serve as starting points for the transfer of a printing paste. Accordingly, printing paste that would, in the case where the projecting portions are not provided, remain in the bases of the cells is transferred to the printing target material via the projecting portions, which increases the transfer efficiency. As a result, a paste film that is smooth and has the required thickness can be printed.