Abstract:
A video decoding device for decoding video using inter prediction includes entropy decoding means for decoding an inter-PU partition type syntax; and decoding control means for making the entropy decoding means decode the inter-PU (Prediction Unit) partition type syntax of a CU (Coding Unit) to be decoded, based on whether the prediction mode of the CU to be decoded is an inter prediction mode and whether a size of the CU to be decoded is equal to a predetermined minimum inter-PU size.
Abstract:
An object is to provide an image processing apparatus capable of appropriately distinguishing various object types. An image processing apparatus (1C) comprising: detector means (11) for detecting objects in an input SAR image and generating object chips; projection calculator means (12) for calculating projection information of each object using SAR geometry; feature learner means (14) for learning, for each object, a relation between an object chip and its projection information, and thereby generating learnt features of object chips; and classifier means (15) for classifying object chips into classes based on the learnt features of object chips.
Abstract:
A video encoding device includes encoding control means 11 for controlling an inter-PU partition type of a CU to be encoded, based on the maximum number (PA) of motion vectors allowed for an image block having a predetermined area and the number (PB) of motion vectors of an encoded image block contained in the image block having the predetermined area. A video decoding device includes decoding control means for controlling an inter-PU partition type of a CU to be decoded, based on the maximum number (PA) of motion vectors allowed for an image block having a predetermined area and the number (PB) of motion vectors of a decoded image block contained in the image block having the predetermined area.
Abstract:
In a video decoding device, a quantization step size decoding unit calculates a quantization step size that controls a granularity of the inverse quantization by, based on an image prediction, selectively using a mean value of at least a quantization step size assigned to a leftwardly adjacent neighboring image block already decoded and a quantization step size assigned to a upwardly adjacent neighboring image block already decoded or a quantization step size assigned to an image block decoded immediately before.
Abstract:
A video decoding device and method, including extracting PCM block size information including a threshold, from a bitstream, determining the threshold based on the extracted PCM block size information; parsing a PCM header from the bitstream with respect to an encoded block, only when said encoded block is prediction mode of intra prediction and a block size of said encoded block is equal to or greater than the determined threshold, controlling an entropy decoding process and a PCM decoding process based on the parsed PCM header; parsing transformed data of a prediction error data of an image in the bitstream; and PCM-decoding PCM data of the image in the bitstream, wherein the decoding performs the decoding operation based on the prediction mode being intra prediction and based on the block size of the encoded block being equal to or greater than the determined threshold.
Abstract:
An image processing device which is capable of accurately detect pixels covered by cloud shadows and remove effects of the cloud shadows in an images are provided. The device includes: a cloud transmittance calculation unit that calculates transmittance of the one or more clouds in an input image, for each pixel; a cloud height estimation unit that determines estimation of a height from the ground to each cloud in the input image to detect position of corresponding one or more shadows; an attenuation factor estimation unit that calculates attenuation factors for the direct sun irradiance by applying an averaging filter to the cloud transmittance calculated; and a shadow removal unit that corrects pixels affected by the one or more shadows, based on a physical model of a cloud shadow formation by employing the attenuation factors calculated and the position, and outputs an image which includes the pixels corrected.
Abstract:
A video encoding device includes: pixel bit length increasing means for increasing a pixel bit length of an input image based on pixel bit length increase information; transform means for transforming output data of the pixel bit length increasing means; entropy encoding means for entropy-encoding output data of the transform means; non-compression encoding means for non-compression-encoding input data; multiplexed data selection means for selecting output data of the entropy encoding means or output data of the non-compression encoding means; and multiplexing means for multiplexing the pixel bit length increase information in a bitstream, wherein a pixel bit length of an image corresponding to the output data of the entropy encoding means and a pixel bit length of an image corresponding to the output data of the non-compression encoding means are different from each other.
Abstract:
A video decoding device for decoding video using inter prediction comprises decoding control unit setting partition type of CU to be decoded to a type other than N×N which indicates a size of PU obtained by dividing a CU to be decoded is a minimum size, when a prediction mode of the CU to be decoded is an inter prediction and a size of the CU to be decoded is equal to a minimum CU size.
Abstract:
A video encoding device includes a transformer for transforming an image block, an entropy encoder (103) for entropy encoding transformed data of the image block transformed by the transformer, a PCM encoder (1070) for PCM encoding the image block, and a multiplexed data selector (109) for selecting output data of any one of the entropy encoder (103) and the PCM encoder (1070) for each image block. The PCM encoder (1070) embeds, at the beginning of PCM data, a subsequent_pcm_flag syntax indicating whether an image block of PCM data follows or not.
Abstract:
A video encoding device includes a down-sampler with sampling position shifter 107 configured to down-sample a luminance signal, and a predictor 101 configured to linearly predict a color difference signal from a down-sampled luminance signal. The down-sampler with sampling position shifter 107 shifts a sampling position of the down-sampled luminance signal in accordance with a scan to be processed. A video decoding device includes a down-sampler with sampling position shifter 205 configured to down-sample a luminance signal, and a predictor 203 configured to linearly predict a color difference signal from a down-sampled luminance signal. The down-sampler with sampling position shifter 205 shifts a sampling position in the down-sampled luminance signal in accordance with a scan to be processed.