Abstract:
An estimation unit estimates attitude parameters, which are parameters representing an attitude of an object in a target image based on the target image, which is an image in which the object whose attitude is to be estimated has been taken, using an attitude estimation model learned using one or more teacher data including a teacher image, which is an image in which the object has been taken, and the attitude parameters of the object in the teacher image. An acquisition unit acquires a teacher image whose attitude similarity, which is a degree of similarity between the estimated attitude parameters and the attitude parameters related to the teacher image, is the largest among one or more teacher images included in the one or more teacher data. A first computation unit computes an image similarity, which is a degree of similarity between the target image and the acquired teacher image.
Abstract:
An object of an example embodiment of the present disclosure is to stably estimate a navigation status of a target ship at a predetermined time from time-series position information of the ship. A ship behavior analyzing device according to the example embodiment of the present disclosure includes a ship detection means for detecting a ship from synthetic aperture radar (SAR) data, a wake extraction means for extracting a wake of the detected ship, a wake pattern generation means for generating a wake pattern image by using the extracted wake, and a navigation status estimation means for estimating a navigation status of the target ship by using the generated wake pattern image.
Abstract:
A video encoding device includes encoding control means 11 for controlling an inter-PU partition type of a CU to be encoded, based on the maximum number (PA) of motion vectors allowed for an image block having a predetermined area and the number (PB) of motion vectors of an encoded image block contained in the image block having the predetermined area. A video decoding device includes decoding control means for controlling an inter-PU partition type of a CU to be decoded, based on the maximum number (PA) of motion vectors allowed for an image block having a predetermined area and the number (PB) of motion vectors of a decoded image block contained in the image block having the predetermined area.
Abstract:
In a video decoding device, a quantization step size decoding unit calculates a quantization step size that controls a granularity of the inverse quantization by, based on an image prediction, selectively using a mean value of at least a quantization step size assigned to a leftwardly adjacent neighboring image block already decoded and a quantization step size assigned to a upwardly adjacent neighboring image block already decoded or a quantization step size assigned to an image block decoded immediately before.
Abstract:
A video encoding device includes encoding control means 11 for controlling an inter-PU partition type of a CU to be encoded, based on the maximum number (PA) of motion vectors allowed for an image block having a predetermined area and the number (PB) of motion vectors of an encoded image block contained in the image block having the predetermined area. A video decoding device includes decoding control means for controlling an inter-PU partition type of a CU to be decoded, based on the maximum number (PA) of motion vectors allowed for an image block having a predetermined area and the number (PB) of motion vectors of a decoded image block contained in the image block having the predetermined area.
Abstract:
A video decoding device and method, including extracting PCM block size information including a threshold, from a bitstream, determining the threshold based on the extracted PCM block size information; parsing a PCM header from the bitstream with respect to an encoded block, only when said encoded block is prediction mode of intra prediction and a block size of said encoded block is equal to or greater than the determined threshold, controlling an entropy decoding process and a PCM decoding process based on the parsed PCM header; parsing transformed data of a prediction error data of an image in the bitstream; and PCM-decoding PCM data of the image in the bitstream, wherein the decoding performs the decoding operation based on the prediction mode being intra prediction and based on the block size of the encoded block being equal to or greater than the determined threshold.
Abstract:
The present invention is directed to an image processing method, comprising: deriving a pixel statistical value of pixels and edge information for each of regions in a plurality of layers, the regions including attention pixels and having ranges that are successively narrower; correcting differential information between a pixel statistical value for a region in an attention layer and a pixel statistical value for a region in a layer wider than the region in the attention layer by using the edge information; correcting the pixel statistical value for the region in the attention layer by using the corrected differential information and the pixel statistical value for the region wider than the region in the attention layer; re-correcting the corrected pixel statistical value for the region in the attention layer by using a pixel statistical value for a region equal to or wider than a region in each of the layers and differential information between the uncorrected pixel statistical value for the region in the attention layer and the corrected pixel statistical value for the region in the attention layer; and correcting the attention pixel by repeating the correcting and the re-correcting the pixel statistical value for the region in the attention layer sequentially in the respective layers until the region is reduced from a maximum range to a minimum range.
Abstract:
A method includes: calculating a pixel statistical value and edge of pixels for each of areas of a multi-layer, the areas each containing a target pixel and having a successively decreased range; correcting the edge based on a pixel statistical value of an area that is wider than a specific area; correcting difference between a pixel statistical value of the specific area and the pixel statistical value of the area that is wider than the specific area using the post-correction edge; correcting the pixel statistical value of the specific area using post-correction difference and the pixel statistical value of the area that is wider than the specific area; and correcting the target pixel by repeating correction of the pixel statistical value of the specific area successively in each area until the area reduces its range from the maximum range to the minimum range.
Abstract:
A video encoding device for encoding video using inter prediction includes encoding control means 11 for controlling an inter-PU partition type of a CU to be encoded, based on a minimum inter-PU size (PA) and a CU size (PB) of the CU to be encoded. A video decoding device includes decoding control means for controlling an inter-PU partition of a CU to be decoded, based on the minimum inter-PU size (PA) and the size (PB) of the CU to be decoded.
Abstract:
A satellite attitude estimation system 20 includes a determination unit 21 which determines the maximum pixel, which is a pixel with the largest luminance, and the minimum pixel, which is a pixel with the smallest luminance, respectively, in an infrared image, which is an image taken by an infrared sensor of a target satellite that is a satellite whose attitude is to be estimated, an association unit 22 which associates the determined maximum and minimum pixels with coordinates on the 3D structure of the target satellite, respectively, a computation unit 23 which computes normal vectors for a surface including the coordinates associated with the pixel, respectively, over the coordinates associated with each pixel, and a sun direction estimation unit 24 which estimates the direction of the sun relative to the target satellite before the infrared image is taken using the computed normal vectors.