Abstract:
It is an object of the present invention to provide a method for producing a secondary battery in which water in the outer package can be removed even when the secondary battery includes an electrolytic solution containing a halogen-containing compound. The present exemplary embodiment is a method for producing a secondary battery including an electrolytic solution containing a supporting salt, a nonaqueous solvent, and a halogen-containing compound, an electrode assembly including a negative electrode and a positive electrode, and an outer package, the method including (1) disposing a first solution containing at least the supporting salt and the nonaqueous solvent, and the electrode assembly in the outer package; (2) charging the electrode assembly; (3) emitting from the outer package a gas generated by the charge; and (4) injecting a second solution including at least the halogen-containing compound into the outer package after the gas is emitted, wherein the first solution does not contain the halogen-containing compound, and the electrolytic solution includes the first solution and the second solution.
Abstract:
The present invention relates to a lithium secondary battery, wherein a peak at 167 to 171 eV and a peak at 162 to 166 eV are present in XPS analysis of sulfur (S2p) of a positive electrode surface, and P169/P164 is in the range of 0.7 to 2.0 wherein the P 169/P 164 is the ratio between the intensity of the peak at 167 to 171 eV (P169) and the intensity of the peak at 162 to 166 eV (P164). The present invention can provide a lithium secondary battery having excellent cycle characteristics.
Abstract translation:本发明涉及一种锂二次电池,其中在正电极表面的硫(S2p)的XPS分析中存在167至171eV的峰和162至166eV的峰,并且P169 / P164在范围内 为0.7〜2.0,其中P 169 / P 164为167至171eV(P169)峰强度与162至166eV峰强度之间的比值(P164)。 本发明可以提供具有优异的循环特性的锂二次电池。
Abstract:
The present invention relates to a lithium ion secondary battery comprising an electrode element comprising a positive electrode, a negative electrode and a separator, and an electrolyte solution, wherein the separator has a shrinking ratio of 2% or less by heat treatment at 90 ° C. for 6 hours, and a contest of physically adsorbed water of the electrode element is 2% by mass or less, or a content of chemically adsorbed water in a positive electrode active material layer of the positive electrode is 1% by mass or less.
Abstract:
A negative electrode active material comprising silicon oxide satisfying the following Equation 1 and Equation 2 when solid state NMR (29Si-DDMAS) of silicon is measured for the silicon oxide after performing charging at least once is excellent in the performance as a negative electrode active material for a lithium secondary battery; 0.42≦S1/(S1+S2+S3)≦0.55 (Equation 1) 0.21≦S3/(S1+S2+S3)≦0.26, (Equation 2) in which S1 is a sum of peak areas of a group of signals assigned to Si having a Si—Si bond and having peaks at 0 to −15 ppm, −55 ppm, −84 ppm and −88 ppm, S2 is a sum of peak areas of a group of signals assigned to Si having a Si(OH)4-n(OSi)n (n=3, 4) structure and having peaks at −100 ppm and −120 ppm, and S3 is a sum of peak areas of a group of signals assigned to Si having a Si(OLi)4-n(OSi)n (n=0, 1, 2, 3) structure and having peaks at −66 ppm, −74 ppm, −85 ppm and −96 ppm.
Abstract:
Provided are a lithium secondary battery wherein gas generation associated with charging and discharging can be suppressed even in case where silicon and silicon oxide are contained as negative electrode active materials, and wherein deformation due to the gas generation can be suppressed even in case where a resin film is used as an outer package; and a method for manufacturing the lithium secondary battery. A lithium secondary battery comprises a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and an electrolytic solution used to immerse the negative electrode active material and the positive electrode active material, wherein the negative electrode active material contains silicon and silicon oxide that have been subjected to a reduction treatment.
Abstract:
There is provided a lithium ion secondary battery having a positive electrode comprising a lithium nickel composite oxide as a positive electrode active material and a separator consisting of one or more layers selected from polyimide layer, polyamide layer, the battery having a low self-discharge failure rate even after long term storage. The present invention relates to a lithium ion secondary battery having a positive electrode comprising a lithium nickel composite oxide and a separator consisting of one or more layers selected from polyimide layer, polyamide layer, and polyamide imide layer, wherein the battery comprises an acid and/or an acid anhydride in an electrolyte solution and/or a member in contact with the electrolyte solution.
Abstract:
A negative electrode for a lithium ion secondary battery is disclosed, which comprises, as active materials, (a) at least one material selected from metals capable of forming an alloy with lithium and metal oxides capable of absorbing and desorbing lithium ions (hereinafter referred to as metal and/or metal oxide), and (b) a surface-coated carbon material capable of absorbing and desorbing lithium ions; wherein, an average value of circularity of the metal and/or metal oxide particles defined by following formula (1) is 0.78 or more; Circularity=4πS/L2 (1) wherein S is an area of a projected image of particle and L is a circumferential length of the projected image of particle. The lithium ion secondary battery having this electrode has improved cycle characteristics.
Abstract:
There is provided a lithium ion secondary battery having a positive electrode comprising a lithium nickel composite oxide as a positive electrode active material, and a separator consisting of one or more layers selected from a polyimide layer, a polyamide layer, and a polyamide imide layer, the lithium secondary battery exhibiting a low self-discharge failure rate even after long term storage. The present invention pertains to a lithium ion secondary battery having a positive electrode comprising a positive electrode active material comprising a lithium nickel composite oxide and a separator consisting of one or more layers selected from a polyimide layer, a polyamide layer, and a polyamide imide layer, wherein a suspension prepared by mixing the positive electrode active material and a deionized water at a mass ratio of 2:98 shows a pH of 9.3 or less.
Abstract:
The present invention relates to a lithium ion secondary battery comprising a positive electrode having a coating amount per unit area of 50 mg/cm2 or more and an electrode density of 3.3 g/cc or more and a negative electrode having a coating amount per unit area of 24 mg/cm2 or more and an electrode density of 1.5 g/cc or more, a separator having a shrinking ratio of 2% or less by heat treatment at 80° C. for 6 hours, and an electrolyte solution comprising at least one sulfonic acid ester compound, and a ratio of a sulfur content in the central portion (As) and a sulfur content in the edge portion (Bs) of the positive electrode and the negative electrode, in each, is 0.7≦As/Bs≦1.1.
Abstract:
The present invention provides a lithium secondary battery, wherein a peak at 167 to 171 eV and a peak at 160 to 164 eV are present in XPS analysis of sulfur on a negative electrode surface (S2p), and P169/P162 is in the range of 0.7 to 2.0 wherein the P169/P162 is the ratio between the intensity of the peak at 167 to 171 eV (P169) and the intensity of the peak at 160 to 164 eV (P162).