CHLOROSILICATE FLUORESCENT MATERIAL, METHOD FOR PRODUCING THE SAME, AND LIGHT EMITTING DEVICE

    公开(公告)号:US20230332043A1

    公开(公告)日:2023-10-19

    申请号:US18341365

    申请日:2023-06-26

    CPC classification number: C09K11/617 H01L33/26

    Abstract: Provided are a chlorosilicate fluorescent material having high light emission efficiency, a method for producing the same, and a light emitting device. In certain embodiments, the chlorosilicate fluorescent material has a chemical composition comprising Ca, Eu, Mg, Si, O, and Cl, wherein when a molar ratio of Si in 1 mol of the chemical composition is set as 4, the chlorosilicate fluorescent material comprises Ca in a molar ratio range of 7.0 or more and 7.94 or less, Eu in a molar ratio range of 0.01 or more and 1.0 or less, Ca and Eu in a total molar ratio range of 7.70 or more and 7.95 or less, Mg in a molar ratio range of 0.9 or more and 1.1 or less, and Cl in a molar ratio range of more than 1.90 and 2.00 or less.

    LIGHT EMITTING DEVICE
    2.
    发明申请

    公开(公告)号:US20210126169A1

    公开(公告)日:2021-04-29

    申请号:US17139655

    申请日:2020-12-31

    Abstract: Provided is a light emitting device capable of realizing an excellent color rendering property. The light emitting device includes a first light emitting element having a light emission peak wavelength within a range of 400 nm or more and 490 nm or less, a second light emitting element having a different light emission peak wavelength from the first light emitting element within a range of 400 nm or more and 490 nm or less, a first fluorescent material that is excited by at least one of the first light emitting element and the second light emitting element and emits light having a light emission peak wavelength within a range of 500 nm or more and 540 nm or less, and a second fluorescent material that is excited by at least one of the first light emitting element and the second light emitting element and emits light having a light emission peak wavelength within a range of 600 nm or more and 680 nm or less, wherein the first fluorescent material is a Ce-activated aluminate fluorescent material containing Lu, Al, and Ga, and optionally at least one element selected from rare earth elements other than Lu.

    METHOD FOR PRODUCING NITRIDE FLUORESCENT MATERIAL, NITRIDE FLUORESCENT MATERIAL AND LIGHT EMITTING DEVICE

    公开(公告)号:US20210032536A1

    公开(公告)日:2021-02-04

    申请号:US17063696

    申请日:2020-10-05

    Abstract: Disclosed are a production method for a nitride fluorescent material, a nitride fluorescent material and a light emitting device. The production method is for producing a nitride fluorescent material that has, as a fluorescent material core, a calcined body having a composition containing at least one element Ma selected from the group consisting of Sr, Ca, Ba and Mg, at least one element Mb selected from the group consisting of Li, Na and K, at least one element Mc selected from the group consisting of Eu, Ce, Tb and Mn, and Al, and optionally Si, and N, and the method includes preparing a calcined body having the above-mentioned composition, bringing the calcined body into contact with a fluorine-containing substance, and subjecting it to a first heat treatment at a temperature of 100° C. or higher and 500° C. or lower to form a fluoride-containing first film on the calcined body, and forming on the calcined body, a second film that contains a metal oxide containing at least one metal element M2 selected from the group consisting of Si, Al, Ti, Zr, Sn and Zn and subjecting it to a second heat treatment at a temperature in a range of higher than 250° C. and 500° C. or lower.

    NITRIDE FLUORESCENT MATERIAL, METHOD OF PRODUCING NITRIDE FLUORESCENT MATERIAL AND LIGHT EMITTING DEVICE

    公开(公告)号:US20200172805A1

    公开(公告)日:2020-06-04

    申请号:US16779642

    申请日:2020-02-02

    Abstract: Provided is a method of producing a nitride fluorescent material containing silicon nitride particles containing Eu, at least one alkaline earth metal selected from the group consisting of Mg, Ca, Sr, and Ba, Al, and fluorine in a composition of the silicon nitride particles. The method includes heat treating a raw material mixture containing an Eu source, a source of the alkaline earth metal, an Al source, an Si source, and an alkaline earth metal fluoride containing at least one selected from the group consisting of Mg, Ca, Sr, and Ba, wherein a molar content ratio of fluorine atom to Al is from 0.02 to 0.3.

    METHOD FOR PRODUCING CERAMIC SINTERED BODY, CERAMIC SINTERED BODY, AND LIGHT EMITTING DEVICE

    公开(公告)号:US20200172804A1

    公开(公告)日:2020-06-04

    申请号:US16695702

    申请日:2019-11-26

    Abstract: Provided are a method for producing a ceramic sintered body having improved light emission intensity, a ceramic sintered body, and a light emitting device. The method for producing a ceramic sintered body comprises preparing a molded body that contains a nitride fluorescent material having a composition containing: at least one alkaline earth metal element M1 selected from the group consisting of Ba, Sr, Ca, and Mg; at least one metal element M2 selected from the group consisting of Eu, Ce, Tb, and Mn; Si; and N, wherein a total molar ratio of the alkaline earth metal element M1 and the metal element M2 in 1 mol of the composition is 2, a molar ratio of the metal element M2 is a product of 2 and a parameter y and wherein y is in a range of 0.001 or more and less than 0.5, a molar ratio of Si is 5, and a molar ratio of N is 8, and wherein the nitride fluorescent material has a crystallite size, as calculated by X-ray diffraction measurement using the Halder-Wagner method, of 550 Å or less, and calcining the molded body at a temperature in a range of 1,600° C. or more and 2,200° C. or less to obtain a sintered body.

    METHOD FOR PRODUCING BETA-SIALON FLUORESCENT MATERIAL

    公开(公告)号:US20190330528A1

    公开(公告)日:2019-10-31

    申请号:US16504937

    申请日:2019-07-08

    Abstract: A method for producing β-sialon fluorescent material having excellent emission intensity is provided. The method for producing β-sialon fluorescent material includes providing a composition comprising silicon nitride that contains aluminium, an oxygen atom, and europium, heat treating the composition, contacting the heat-treated composition with a basic substance, and washing the composition, which has been contacted with the basic substance, with an acidic liquid medium.

    METHOD FOR PRODUCING FLUORESCENT MATERIAL, AND FLUORESCENT MATERIAL

    公开(公告)号:US20190300785A1

    公开(公告)日:2019-10-03

    申请号:US16368984

    申请日:2019-03-29

    Abstract: A method for producing a γ-AlON fluorescent material, comprising: preparing a first mixture containing a compound containing Mn, a compound containing Li, a compound containing Mg, an aluminum oxide, and an aluminum nitride, in which the amount of fluorine is 150 ppm by mass or less relative to the total amount of the first mixture excluding fluorine, and subjecting the first mixture to a first heat treatment to obtain a first calcined product having an average particle diameter D1, as measured according to a Fisher Sub-Sieve Sizer method, of 10.0 μm or more; and preparing a second mixture containing the first calcined product, a compound containing Mn, a compound containing Li, a compound containing Mg, an aluminum oxide, and an aluminum nitride, in which the amount of fluorine is 150 ppm by mass or less relative to the total amount of the second mixture excluding fluorine, and subjecting the second mixture to a second heat treatment to obtain a second calcined product having an average particle diameter D2, as measured according to the Fisher Sub-Sieve Sizer method, of 16.0 μm or more, wherein the second mixture contains the first calcined product in an amount of more than 20% by mass and 82% by mass or less.

    LIGHT-EMITTING DEVICE
    9.
    发明申请

    公开(公告)号:US20180203301A1

    公开(公告)日:2018-07-19

    申请号:US15866826

    申请日:2018-01-10

    CPC classification number: G02F1/133602 G02F1/133514 H01L33/50

    Abstract: Provided is a light-emitting device including a light-emitting element having a peak emission wavelength in a range of from 400 nm to 470 nm, and a fluorescent member including a first fluorescent material including an aluminate that contains Mg, Mn, and at least one alkali earth metal selected from the group consisting of Ba, Sr, and Ca, a second fluorescent material having a different composition from the first fluorescent material, and a third fluorescent material. The first, second and third fluorescent materials have a peak emission wavelength in a range of from 510 nm to 525 nm, from 510 nm to 550 nm, and from 620 nm to 670 nm, respectively. The light-emitting device has an emission spectrum with a relative emission intensity of 35% or less at 500 nm and of 65% or less at 540 nm when a local maximum light-emitting emission intensity in a range of from 510 nm to 535 nm is taken as 100%.

    METHOD OF PRODUCING NITRIDE FLUORESCENT MATERIAL

    公开(公告)号:US20180171221A1

    公开(公告)日:2018-06-21

    申请号:US15842133

    申请日:2017-12-14

    Abstract: Provided is a production method of a nitride fluorescent material capable of producing a nitride fluorescent material having a higher emission intensity. The production method is for producing a nitride fluorescent material having a composition containing at least one element Ma selected from the group consisting of Sr, Ca, Ba and Mg, at least one element Mb selected from the group consisting of Li, Na and K, at least one element Mc selected from the group consisting of Eu, Ce, Tb and Mn, and Al and N, which includes subjecting a raw material mixture containing elements constituting the composition of the nitride fluorescent material, along with SrF2 and/or LiF added thereto as a flux, to a heat treatment, wherein the amount of the flux is in a range of 5.0% by mass or more and 15% by mass or less relative to the total amount, 100% by mass of the raw material mixture and the flux.

Patent Agency Ranking