METHOD AND APPARATUS FOR PROCESSING SIGNALS OF SEMICONDUCTOR DETECTOR
    1.
    发明申请
    METHOD AND APPARATUS FOR PROCESSING SIGNALS OF SEMICONDUCTOR DETECTOR 有权
    用于处理半导体检测器信号的方法和装置

    公开(公告)号:US20160018537A1

    公开(公告)日:2016-01-21

    申请号:US14800635

    申请日:2015-07-15

    CPC classification number: G01T1/247 G01T1/241 H04N5/32

    Abstract: The present invention provides a method and apparatus for processing signals of a semiconductor detector, including: acquiring a relationship of a time difference between anode and cathode signals of the semiconductor detector with an anode signal amplitude; obtaining an optimal data screening interval according to the relationship of the time difference between anode and cathode signals of the semiconductor detector with the anode signal amplitude, wherein the optimal data screening interval is an interval where the time difference between the anode and cathode signals is greater than 50 ns; and screening and processing the collected data according to the optimal data screening interval when the semiconductor detector collects data. The present invention better overcomes the inherent crystal defects of the detector, reduces the effect of background noise, increases the energy resolution of the cadmium zinc telluride detector under room temperature, and improves the peak-to-compton ratio.

    Abstract translation: 本发明提供了一种用于处理半导体检测器的信号的方法和装置,包括:用阳极信号振幅获取半导体检测器的阳极和阴极信号之间的时间差的关系; 根据半导体检测器的阳极和阴极信号的时间差与阳极信号幅度的关系获得最佳数据筛选间隔,其中最佳数据筛选间隔是阳极和阴极信号之间的时间差较大的间隔 超过50 ns; 并且当半导体检测器收集数据时,根据最佳数据筛选间隔筛选和处理收集的数据。 本发明更好地克服了检测器的固有晶体缺陷,降低了背景噪声的影响,提高了碲化锌碲化镉检测器在室温下的能量分辨率,提高了峰 - 峰比。

    AERIAL CDZNTE INSPECTION SYSTEM AND INSPECTION METHOD

    公开(公告)号:US20180284302A1

    公开(公告)日:2018-10-04

    申请号:US15740813

    申请日:2016-08-23

    Abstract: The present invention relates to the field of radiation detection, and provides a CdZnTe aerial inspection system and an inspection method. The inspection system comprises a CdZnTe spectrometer (10) and an aircraft (20). The aircraft (20) flies and carries the CdZnTe spectrometer (10) to realize a function of aerial inspection, thereby improving operating efficiency of nuclear radiation monitoring. The CdZnTe spectrometer (10) has high energy resolution, a small volume, a light weight, and desirable portability. By combining the CdZnTe spectrometer (10) and the aircraft (20), the present invention enables high measurement precision, a long operation duration, and an aerial access to a site of a nuclear accident to perform operations and inspect the site, thus reducing radiation exposure received by a person entering the site, and providing support for rescue operation.

    TERAHERTZ MIXER, METHOD OF MANUFACTURING TERAHERTZ MIXER, AND ELECTRONIC DEVICE INCLUDING TERAHERTZ MIXER

    公开(公告)号:US20220109241A1

    公开(公告)日:2022-04-07

    申请号:US17418951

    申请日:2019-10-10

    Abstract: The present disclosure provides a terahertz mixer, a method of manufacturing the terahertz mixer, and an electronic device including the mixer. The terahertz mixer includes: a cavity for forming a radio frequency input waveguide and a local oscillator input waveguide, and for accommodating a microstrip line; the microstrip line formed on at least a part of an inner surface of the cavity by using a semiconductor growth process, wherein the microstrip line extends into a portion of the cavity where the radio frequency input waveguide is located so as to form a microstrip antenna for receiving a radio frequency input signal, and into a portion of the cavity where the local oscillator input waveguide is located so as to form a microstrip antenna for receiving a local oscillator input signal.

Patent Agency Ranking