Abstract:
The present invention provides a method and apparatus for processing signals of a semiconductor detector, including: acquiring a relationship of a time difference between anode and cathode signals of the semiconductor detector with an anode signal amplitude; obtaining an optimal data screening interval according to the relationship of the time difference between anode and cathode signals of the semiconductor detector with the anode signal amplitude, wherein the optimal data screening interval is an interval where the time difference between the anode and cathode signals is greater than 50 ns; and screening and processing the collected data according to the optimal data screening interval when the semiconductor detector collects data. The present invention better overcomes the inherent crystal defects of the detector, reduces the effect of background noise, increases the energy resolution of the cadmium zinc telluride detector under room temperature, and improves the peak-to-compton ratio.
Abstract:
Provided are a method of manufacturing a terahertz detection device including detectors and lenses arranged in an array and a terahertz detection apparatus. An example method includes forming detectors in a first area of a first surface of a base substrate through a double-sided photoetching process to form a detector array, and providing at least one first alignment mark in a second area of the first surface of the base substrate. A plurality of lens mounting parts are formed in a third area of a second surface of the base substrate through the double-sided photoetching process, and at least one second alignment mark is provided in a fourth area of the second surface of the base substrate. The lenses are mounted to the lens mounting parts to form the detection device. The first alignment mark is aligned with the second alignment mark by using a double-sided photoetching machine.
Abstract:
A terahertz detector and a method of manufacturing a terahertz detector, wherein the terahertz detector including a substrate (2) and at least one detection unit. Each detection unit includes: a channel material (1) arranged on the substrate, two electrodes (3, 4) respectively in ohmic contact with both ends of the channel material (1) in a longitudinal direction, and a three-dimensional grapheme (5) in direct or indirect thermal contact with the channel material (1).
Abstract:
The present invention relates to the field of radiation detection, and provides a CdZnTe aerial inspection system and an inspection method. The inspection system comprises a CdZnTe spectrometer (10) and an aircraft (20). The aircraft (20) flies and carries the CdZnTe spectrometer (10) to realize a function of aerial inspection, thereby improving operating efficiency of nuclear radiation monitoring. The CdZnTe spectrometer (10) has high energy resolution, a small volume, a light weight, and desirable portability. By combining the CdZnTe spectrometer (10) and the aircraft (20), the present invention enables high measurement precision, a long operation duration, and an aerial access to a site of a nuclear accident to perform operations and inspect the site, thus reducing radiation exposure received by a person entering the site, and providing support for rescue operation.
Abstract:
The present disclosure provides a terahertz mixer, a method of manufacturing the terahertz mixer, and an electronic device including the mixer. The terahertz mixer includes: a cavity for forming a radio frequency input waveguide and a local oscillator input waveguide, and for accommodating a microstrip line; the microstrip line formed on at least a part of an inner surface of the cavity by using a semiconductor growth process, wherein the microstrip line extends into a portion of the cavity where the radio frequency input waveguide is located so as to form a microstrip antenna for receiving a radio frequency input signal, and into a portion of the cavity where the local oscillator input waveguide is located so as to form a microstrip antenna for receiving a local oscillator input signal.
Abstract:
A terahertz security inspection robot is provided, including: a housing including a main housing and a head housing rotatably connected to the main housing; a terahertz wave imaging mechanism including a mirror assembly arranged in the head housing and a detector array arranged in the main housing; and a rotating mechanism configured to cause the head housing and the mirror assembly located in the head housing to rotate with respect to the main housing, so that the mirror assembly of the terahertz wave imaging mechanism is oriented in different directions to respectively perform terahertz scanning and imaging on objects to be inspected in different inspection regions in a security inspection scene.