Abstract:
A human body security inspection apparatus, a method of operating the same, and an associated filter device are disclosed. The human body security inspection apparatus includes a radiation beam exit configured for emitting a radiation beam; a beam guiding box configured for guiding the radiation beam; and a filter device configured between the radiation beam exit and the beam guiding box. The filter device includes a housing and a filter cage having a central axis. The filter cage is formed by arranging two or more pairs of filtering sheets, which are made of different materials and/or have different thicknesses, in an encircling way. The filter cage is rotatable about its central axis such that at least one pair of filtering sheets is capable of filtering the radiation beam to adjust an outputted dosage of the radiation beam of the human body security inspection apparatus.
Abstract:
The present disclosure provides an X-ray backscattering safety inspection system, comprising: one or more backscattering inspection subsystem configured to inspect an object to be inspected by emitting X-ray beams towards the object to be inspected and inspecting scattering signals; and a control subsystem configured to adjust a distance between the backscattering inspection subsystem and locations on a side of the object to be inspected where are irradiated by the X-ray beams in real time according to a size of the object to be inspected such that the scattering signals inspected are optimized. The system may be adapted to objects to be inspected with different sizes or shapes while enhancing backscattering signals for imaging.
Abstract:
A human body back-scattering inspection method and system are discloses. The method includes: obtaining a back-scattering scan image of a human body under inspection; distinguishing a body image from a background image in the back-scattering scan image; and calculating a feature parameter of the background image to determine whether radioactive substance is carried with the human body. With some embodiments of the present disclosure, it is possible to determine whether any radioactive substance is carried with a human body during back-scattering inspection of the human body. In further embodiments of the present disclosure, it is possible to approximately determine which part(s) of the human body carries the radioactive substance. This improves efficiency of inspection.
Abstract:
A human body back-scattering inspection system is disclosed. The system comprises a flying-spot forming unit configured to output beams of X-rays, a plurality of discrete detectors which are arranged vertically along a human body to be inspected, and a controlling unit coupled to the flying-spot forming unit and the plurality of detectors, and configured to generate a control signal to control the flying-spot forming unit and the plurality of detectors to perform a partition synchronous scan on the human body to be inspected vertically. The present disclosure utilizes the geometry property of the human body back-scattering inspection system, and proposes a multiple-point synchronous scan mechanism which largely accelerates the inspection of human body.
Abstract:
The present disclosure provides an X-ray backscattering safety Inspection system, comprising: one or more backscattering inspection subsystem configured to inspect an object to be inspected by emitting X-ray beams towards the object to be inspected and inspecting scattering signals; and a control subsystem configured to adjust a distance between the backscattering inspection subsystem and locations on a side of the object to be inspected where are irradiated by the X-ray beams in real time according to a size of the object to be inspected such that the scattering signals inspected are optimized. The system may be adapted to objects to be inspected with different sizes or shapes while enhancing backscattering signals for imaging.
Abstract:
The present invention discloses a through-type of millimetre wave person body security inspection system, wherein a person to be inspected passes through an inspect passage therein for performing a security inspection. The through-type of millimetre wave person body security inspection system provided in accordance with the present invention can make a total body dynamic scanning to the person to be inspected, and obtain millimetre wave images and optical images with respect to the person body, thereby achieving the inspection of prohibited articles hidden within clothing of the person body and an automatic alarm thereof.
Abstract:
A safety inspection apparatus is disclosed in embodiments of the present invention. The safety inspection apparatus includes: an x-ray source including a ray emission focal spot; and a plurality of detector modules each of which has a ray receiving surface, and which are arranged along a plurality of straight line segments. The plurality of straight line segments include a first straight line segment and two second straight line segments, and, the two second straight line segments extend from the two ends of the first straight line segment towards the x-ray source side, respectively. In a plane where the sectorial ray beam is located, a normal to the ray receiving surface of each of the detector modules at a midpoint of the ray receiving surface of the each of the detector modules passes generally through the ray emission focal spot of the x-ray source.
Abstract:
The present disclosure provides a human body security inspection apparatus, comprising: a base on which an inspected human stands; a millimeter-wave transceiver configured to perform a millimeter-wave scanning operation on the body of the inspected human standing on the base so as to detect whether or not the inspected human carries contraband and output a first signal; and a metal sensing detector arranged within the base and configured to detect whether or not there is a metallic foreign object in underside of a shoe of the inspected human and output a second signal.
Abstract:
A ray emission device and an imaging system with the ray emission device are disclosed. The ray emission device comprises: a cylinder; a ray source disposed in the cylinder for emitting a ray; and a collimator disposed in the cylinder. The collimator enables the ray emitted by the ray source to form sectorial ray beams at a plurality of positions in an axial direction of the cylinder. The cylinder has a pencil beam forming part arranged over an axial length of the cylinder corresponding to the plurality of positions. The sectorial ray beams form pencil beams through the pencil beam forming part when the cylinder rotates around a rotation axis.
Abstract:
Disclosed is an integrated flying-spot X-ray apparatus comprising a ray generator configured to generate the X-ray, a revolving collimator device provided thereon with at least one aperture and arranged to be rotatable about the ray generator, a frameless torque motor configured to drive the revolving collimator device to rotate about the ray generator, and a cooling device configured to cool the ray generator, wherein the ray generator, the revolving collimator device, the frameless torque motor and the cooling device are mounted on an integrated mounting frame. Compared with the prior art, the integrated flying-spot X-ray apparatus according to the present disclosure has a simple and compact structure and is used as a kernel apparatus for fields of safety inspection and medical treatment.