摘要:
A tunneling magnetic sensing element including an Mg—O insulating barrier which can maintain favorable soft-magnetic properties of a free magnetic layer and can have a high resistance change ratio (ΔR/R) compared to known tunnel magnetic sensing elements is disclosed, and a method of manufacturing such a tunneling magnetic sensing element is also disclosed. An enhance layer (second magnetic layer) composed of Co100-XFeX having a Fe composition ratio X of about 30 to 100 at % is disposed on the Mg—O insulating barrier. With this, the magnetostriction λ of the free magnetic layer can be reduced and the resistance change ratio (ΔR/R) can be increased.
摘要翻译:公开了一种隧道式磁感应元件,其包括能够保持自由磁性层的有利的软磁性能并且与已知的隧道磁传感元件相比可以具有高电阻变化率(&Dgr; R / R)的Mg-O绝缘屏障, 并且还公开了制造这种隧道磁传感元件的方法。 在Mg-O绝缘屏障上设置由Fe组成比X为约30〜100原子%的Co100-XFeX构成的增强层(第二磁性层)。 由此,可以减小自由磁层的磁致伸缩λ,并且可以增加电阻变化率(&Dgr; R / R)。
摘要:
A magnetic sensing element is provided. A free magnetic layer has a three-layer structure including CoMnα sublayers each composed of a metal compound represented by the formula: Co2xMnxαy. The α contains an element β and Sb, the element β being at least one element selected from Ge, Ga, In, Si, Pb, Zn, Sn, and Al. The concentration x and the concentration y are each represented in terms of atomic percent and satisfy the equation: 3x+y=100 atomic percent. One of the CoMnα sublayers is in contact with a lower nonmagnetic material layer. The other CoMnα sublayer is in contact with upper nonmagnetic material layer. As a result, it is possible to achieve a high ΔRA and a lower interlayer coupling magnetic field Hin compared with the known art.
摘要:
A magnetic sensor comprising: a multilayer film which has a pinned magnetic layer, the magnetization thereof being pinned in one direction, and a free magnetic layer formed on the pinned magnetic layer with a nonmagnetic material layer provided therebetween, in which current is allowed to flow in a direction perpendicular to the surfaces of the layers forming the multilayer film, wherein the pinned magnetic layer has a NiaFeb alloy layer (where a and b each indicate atomic percent, and 0
摘要:
A magnetic detecting element capable of maintaining a large ΔRA and reducing magnetostriction by changing a material of a free magnetic layer, and a method of manufacturing the same is provided. A CoMnXZ alloy layer or CoMnXRh alloy layer is formed in a free magnetic layer where an element X is at least one or two elements of Ge, Ga, In, Si, Pb, and Zn, and an element X in the latter case is at least one or two elements of Ge, Ga, In, Si, Pb, Zn, Sn, Al, and Sb. By forming the CoMnXZ alloy layer or the CoMnXRh alloy layer in the free magnetic layer, the magnetostriction of the free magnetic layer can be reduced while maintaining the large ΔRA, compared with a case where only the CoMnX alloy is formed.
摘要:
A tunneling magnetic sensor has a multilayer part including, from bottom to top, a pinned magnetic layer, an insulating barrier layer, and a free magnetic layer. The insulating barrier layer is formed of titanium magnesium oxide (TiMgO) and contains magnesium in an amount of about 4 to 20 atomic percent based on 100 atomic percent of the total content of titanium and magnesium. The insulating barrier layer thus does not have a high concentration of magnesium. This tunneling magnetic sensor can provide a higher rate of resistance change (ΔR/R) at a lower RA (the product of sensor resistance, R, and sensor area, A) than known tunneling magnetic sensors.
摘要:
A tunnel type magnetic sensor includes a fixed magnetic layer that has magnetization fixed in one direction, an insulating barrier layer, and a free magnetic layer that has magnetization varied by an external magnetic field, which are laminated in that order from the bottom. The insulating barrier layer is formed from titanium oxide, and on the free magnetic layer, a first protective layer of platinum or ruthenium is formed. Accordingly, compared to the structure in which the first protective layer is not formed or the first protective layer is formed from Al, Ti, Cu, or IrMn, while a high rate of change in resistance is maintained, the magnetostriction of the free magnetic layer can be effectively decreased. When the insulating barrier layer is formed from aluminum oxide, the rate of change in resistance is decreased, or the magnetostriction of the free magnetic layer cannot be effectively decreased.
摘要:
Described herein is a tunnel type magnetic detection element and a manufacturing method thereof. In the tunnel type magnetic detection element, an enhance layer included in a free magnetic layer (upper magnetic layer) disposed on an insulating barrier layer contacts the insulating barrier layer, which may be made of an oxide such as titanium oxide. Under the insulating barrier layer, a second pinned magnetic layer constituting a pinned magnetic layer is formed in contact with the insulating barrier layer. The Fe composition ratio of the enhance layer is greater than that of the second pinned magnetic layer.
摘要:
A magnetic detection element capable of maintaining the ΔRA at a high level and reducing the magnetostriction by improving a material for a free magnetic layer, as well as a method for manufacturing the same, is provided. The free magnetic layer includes a laminate composed of a CoMnX alloy layer formed from a metal compound represented by a compositional formula CoaMnbXc (where X represents at least one of Ge, Ga, In, Si, Pb, Zn, and Sb and a+b+c=100 atomic percent) and a CoMnZ alloy layer formed from a metal compound represented by a compositional formula CodMneZf (where Z represents at least one of Sn and Al and d+e+f=100 atomic percent). In this manner, the magnetostriction of the free magnetic layer can be reduced.
摘要翻译:提供了能够将DeltaRA保持在高电平并且通过改善自由磁性层的材料来减小磁致伸缩的磁性检测元件及其制造方法。 自由磁性层包括由由组成式表示的金属化合物形成的CoMnX合金层构成的层压体, (其中X表示Ge,Ga,In,Si,Pb,Zn和Sb中的至少一种,a + b + c = 100原子%)和由组成式Co < (其中Z表示Sn和Al中的至少一种,d + e + f = 100原子%)。 以这种方式,可以减小自由磁性层的磁致伸缩。
摘要:
A magnetic detecting device having a large ΔRA value is provided. A free magnetic layer has a three layer structure in which a CoFe layer, a NiaFeb alloy layer (here, a and b are represented by at %, and satisfy the relationship of 47≦a≦77 and a+b=100), and a CoFe layer are laminated. In addition, pinned magnetic layers have heusler alloy layers, which are made of a heusler alloy such as a Co2MnGe alloy. Accordingly, the product ΔRA of a magnetic resistance variation ΔR of the magnetic detecting device and an area A of the device can have a value of 5 mΩμm2 or more.
摘要翻译:提供具有大ΔRA值的磁检测装置。 自由磁性层具有三层结构,其中CoFe层,NiBaFeBb合金层(这里a和b以%表示,满足 47 <= a <= 77和a + b = 100的关系)和CoFe层被层压。 此外,固定磁性层具有由诸如Co 2 MnGe合金的heusler合金制成的heusler合金层。 因此,磁检测装置的磁阻变化量ΔR的乘积DeltaRA和装置的面积A可以具有5m 2以上的值。
摘要:
There is provided a magnetic detecting element having a large ΔRA. A free magnetic layer has a three layer structure in which a CoFe layer, an NiaFeb alloy layer (where a and b are represented by at %, 0≦a≦25, and a+b=100), and a CoFe layer are laminated from the bottom. If the at % of Ni in an NiFe alloy that exists in the free magnetic layer is in this range, a spin-dependent bulk scattering coefficient β increases, and the product ΔRA of the resistance variation of the magnetic detecting element and the area of the element can be made increased.
摘要翻译:提供了具有大DeltaRA的磁检测元件。 自由磁性层具有三层结构,其中CoFe层,Ni / Fe合金层(其中a和b表示为%,0 <= a <= 25,a + b = 100),CoFe层从底部层叠。 如果存在于自由磁性层中的NiFe合金中的Ni的at%在该范围内,则自旋相关体散射系数β增加,并且磁检测元件的电阻变化的乘积DeltaRA与 元素可以增加。