Abstract:
The present invention relates to isolated polypeptides having alpha-amylase activity, catalytic domains, carbohydrate binding domains and polynucleotides encoding the polypeptides, catalytic domains or carbohydrate binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or carbohydrate binding domains.
Abstract:
A method for preparing a dough or a baked product prepared from the dough which method comprises incorporating into the dough a lipolytic enzyme and/or a xylanase and an X143 polypeptide, wherein the X143 polypeptide is a monooxygenase.
Abstract:
A method for improving the freshness of flat breads comprising a) adding to flour or to a dough comprising a flour, a first maltogenic alpha-amylase having at least 70% identity to SEQ ID NO: 1, and compared to SEQ ID NO: 1 comprising the substitutions D261G, T288P, and F188L; and a second maltogenic alpha-amylase having at least 70% identity to SEQ ID NO: 1, and compared to SEQ ID NO: 1 comprising the substitutions D261G, T288P, F194Y, and N375S; and b) making flat breads from the dough.
Abstract:
A method for preparing a dough or a baked product prepared from the dough which method comprises incorporating into the dough a lipolytic enzyme and/or a xylanase and an X143 polypeptide, wherein the X143 polypeptide is a monooxygenase.
Abstract:
The present invention provides isolated polypeptides having alpha-amylase activity catalytic domains, carbohydrate binding domains and polynucleotide encoding the polypeptides, catalytic domains or carbohydrate binding domains. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or carbohydrate binding domains.
Abstract:
A method for improving the freshness of flat breads comprising a) adding to flour or to a dough comprising a flour, a first maltogenic alpha-amylase having at least 70% identity to SEQ ID NO: 1, and compared to SEQ ID NO: 1 comprising the substitutions D261G, T288P, and F188L; and a second maltogenic alpha-amylase having at least 70% identity to SEQ ID NO: 1, and compared to SEQ ID NO: 1 comprising the substitutions D261G, T288P, F194Y, and N375S; and b) making flat breads from the dough.
Abstract:
A method for preparing a dough or a baked product prepared from the dough which method comprises incorporating into the dough a lipolytic enzyme, wherein the lipolytic enzyme has an amino acid sequence which has at least 50% sequence identity to amino acids 20 to 254 of SEQ ID NO: 1.
Abstract:
The present invention provides processes for preparing dough which comprises at least one anti-staling amylase and at least one peptidase. In addition, the present invention provides baked products produced there from which have a desirable degree of softness and improved springiness.
Abstract:
A method for preparing a dough or a baked product prepared from the dough which method comprises incorporating into the dough a lipolytic enzyme, wherein the lipolytic enzyme has an amino acid sequence which has at least 50% sequence identity to amino acids 20 to 254 of SEQ ID NO: 1.
Abstract:
The present invention relates to isolated polypeptides having alpha-amylase activity, catalytic domains, carbohydrate binding domains and polynucleotides encoding the polypeptides, catalytic domains or carbohydrate binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or carbohydrate binding domains.