Abstract:
The present invention relates to a one-photon and/or two-photon fluorescent probe for selectively detecting hydrogen sulfide in the human body using a compound including an α,β-unsaturated carbonyl group and an acedan (2-acyl-6-dimethyl-amino-naphthalene) fluorescent material; to an imaging method of hydrogen sulfide in cells using the same; and to a manufacturing method of the fluorescent probe. More specifically, in the fluorescent probe of the present invention, the α,β-unsaturated carbonyl group of the compound selectively binds to hydrogen sulfide, inducing an increase in fluorescence of the acedan fluorescent material. The fluorescent probe according to the present invention can be conveniently synthesized, enables two-photon excitation, and corresponds to a small-molecule probe having stability and low toxicity in the body. In addition, the fluorescent probe according to the present invention can exhibit a fluorescent change by selectively reacting with hydrogen sulfide, thereby imaging the distribution of hydrogen sulfide in cells or tissues, and thus can be useful for a composition for imaging and an imaging method.
Abstract:
Provided are acedan derivatives having an extended π bond, a method for preparing the acedan derivatives, and a method for two-photon microscopy imaging of amyloid-beta plaque using the acedan derivatives; more particularly, to two-photon absorbing fluorescent compounds having a longer absorption wavelength and emission wavelength than acedan and acedan derivatives which are conventional two-photon absorbing fluorophores. The compounds provided may be usefully used for in vivo imaging studies by imaging cells or tissue using the compounds, and may also be usefully used for diagnosing Alzheimer's disease by imaging amyloid-beta plaque using the compounds.
Abstract:
A fluorescent probe for detecting a tyrosine kinase using a compound having an ortho-hydroxy-benzaldehyde structure, and use thereof are provided. The fluorescent probe can show a change in fluorescence when the compound binds with a tyrosine kinase. The compound can be readily synthesized and has high stability and low cytotoxicity in vivo. The fluorescent probe can be used to image cells or tissues overexpressing the tyrosine kinase, the fluorescent probe can be effectively used in a composition for imaging the tissues and a method of imaging the tissues. Also, the fluorescent probe can be used to image cancer cells or tissues since the fluorescent probe can exhibit fluorescence when the fluorescent probe binds to the cancer cells or tissues overexpressing the tyrosine kinase.
Abstract:
Provided is a method for preparing a novel benzocoumarin-based two-photon absorbing fluorescent dye, such as a pyridinium-benzocoumarin (Py+BC) derivative compound and its precursor compound (pyridyl-benzocoumarin, PyBC), an aryl-benzocoumarin (ArBC) derivative compound, a benzothiazolyl-benzocoumarin (BtBC) derivative compound or a keto-benzocoumarin (KetoBC) derivative compound. The Py+BC derivative compound of the present invention is a two-photon absorbing near-infrared fluorescent dye, which may minimize interference of autofluorescence compared to conventional two-photon absorbing fluorescent dyes such as acedan and naphthalimide, thereby obtaining a high-definition image, and therefore is expected to be effectively used in imaging studies. In addition, when the two-photon absorbing near-infrared fluorescent dye of the present invention is used, it is expected to be suitable for high resolution imaging of deep tissue.
Abstract:
The present invention relates to a compound which is a novel two-photon absorbing fluorescent substance, a production method for the compound, a fluorescence sensor and molecular probe able to sense various substrates or enzyme activity or the like using the same, and a method of sensing enzyme activity or the like using the same. More specifically, the present invention relates to a novel two-photon absorbing fluorescent substance which has the high photo-stability and large two-photon absorption cross-section value of acedan which is a two-photon absorbing fluorescent substance, and has the high fluorescence efficiency of coumarin which is a one-photon absorbing fluorescent substance, while exhibiting absorption and emission characteristics at a longer wavelength than existing acedan and coumarin and so being advantageous in in-vivo imaging. The compound according to the present invention can be used as a fluorescence sensor which is highly sensitive and selective for various substrates, and more particularly, can be used in the study and treatment of diseases in which MAO enzymes are involved such as mood disorders using MAO enzyme activity and inhibitor screening.