Abstract:
The present invention relates to a quantum dot and a preparation method therefor, and more specifically, to a novel quantum dot composite having high surface stability, and a preparation method therefor. The quantum dot composite according to the present invention constitutes a layered-structure ceramic composite in which the layered-structure ceramic comprises a polymer-quantum dot composite between the layers thereof.
Abstract:
The present invention relates to a nanoparticle-based nitroaromatic explosive sensor for detecting nitroaromatic compounds, more specifically to stably detecting explosives in an aqueous solution by introducing, on the surface of the nanoparticles, a molecule which improves the dispersion force of the nanoparticles in an aqueous solution while binding strongly therewith, and which can simultaneously bind with the nitroaromatic compounds.
Abstract:
The present invention relates to a sensor capable of detecting an aromatic nitro compound explosive, and a preparation method thereof, and more specifically, to a nanosensor system, and a detection method using the same, wherein a quantum dot-based sensor for detecting an aromatic nitro compound explosive can conveniently detect an aromatic nitro compound explosive with high sensitivity on the basis of a change in energy transfer between quantum dots. The method for detecting an explosive of the present invention makes an explosive come in contact with a quantum dot thin film to which an explosive can combine, and measures a change in fluorescence wavelength, thereby sensing an explosive. According to the present invention, the method for detecting an explosive on the basis of quantum dots uses a change in fluorescence wavelength which is unlike a known detection method using the change in quantum dot fluorescence intensity, and thus is not sensitive to a change in surroundings, can carry out rapid detection, and can detect even a low concentration of explosives with high sensitivity. Therefore, the present invention is expected to be extensively commercialized.
Abstract:
A fluorescent probe for detecting a tyrosine kinase using a compound having an ortho-hydroxy-benzaldehyde structure, and use thereof are provided. The fluorescent probe can show a change in fluorescence when the compound binds with a tyrosine kinase. The compound can be readily synthesized and has high stability and low cytotoxicity in vivo. The fluorescent probe can be used to image cells or tissues overexpressing the tyrosine kinase, the fluorescent probe can be effectively used in a composition for imaging the tissues and a method of imaging the tissues. Also, the fluorescent probe can be used to image cancer cells or tissues since the fluorescent probe can exhibit fluorescence when the fluorescent probe binds to the cancer cells or tissues overexpressing the tyrosine kinase.