摘要:
A mounting assembly for securing a disk drive to a frame of a computer is provided herein. The mounting assembly includes three rigid mounts and a single flexible mount. Each rigid mount rigidly secures the drive housing to the frame and prevents degradation of performance of the disk drive. The flexible mount diminishes the level of vibration transferred from the frame to drive housing. Further, the flexible mount facilitates flexing of the drive housing intermediate the flexible mount and the rigid mounts. This reduces the effects of a shock pulse to the disk drive and inhibits head slap between a transducer head and a storage disk.
摘要:
Injection molding for a touch surface of a touch sensitive device is disclosed. A single-shot injection molding method can include molding an injected material to encapsulate a touch sensor at a substantially uniform distance from a touch surface of the molded material. A double-shot injection molding method can include molding a first shot of an injected material to contact a portion of a touch sensor and molding a second shot of an injected material to encapsulate at least the remaining portions of the touch sensor to form a touch surface at a substantially uniform distance from the touch sensor. Another molding method can include molding a coating on a touch sensor to having a substantially uniform thickness. The injection molded material can provide a substantially uniform capacitive dielectric for the device. The injection molded touch surface can be incorporated into an electronic mouse, a mobile telephone, a digital media player, or a computer.
摘要:
Capacitive multi-touch sensor panels in which both row and column traces may be formed on a single conducting surface are disclosed. These stack-ups may be made thinner and more flexible allowing them to be particularly well-suited for curved or other non-flat touch sensor panels, such as those that might be present on a mouse or other device designed to be grasped by a user's hand. Curved sensor panel arrays that may be formed from flat substrates are also disclosed. These sensor panel configurations may include channels around the periphery of the array. These channels allow the flat array to lie flat when applied to a curved surface, such as the inside of the curved surface. The pattern of the touch sensor elements may be adjusted across the array to avoid the channels.
摘要:
Injection molding for a touch surface of a touch sensitive device is disclosed. A single-shot injection molding method can include molding an injected material to encapsulate a touch sensor at a substantially uniform distance from a touch surface of the molded material. A double-shot injection molding method can include molding a first shot of an injected material to contact a portion of a touch sensor and molding a second shot of an injected material to encapsulate at least the remaining portions of the touch sensor to form a touch surface at a substantially uniform distance from the touch sensor. Another molding method can include molding a coating on a touch sensor to having a substantially uniform thickness. The injection molded material can provide a substantially uniform capacitive dielectric for the device. The injection molded touch surface can be incorporated into an electronic mouse, a mobile telephone, a digital media player, or a computer.
摘要:
A touch sensitive device having a dielectric layer between a cover layer and a touch sensor layer is disclosed. The dielectric layer can reduce a negative pixel effect associated with poor grounding of an object touching the device. The dielectric layer can reduce a capacitance per unit area of the device to less than about 0.0305 picofarads per square millimeter, thereby reducing the negative pixel effect. The dielectric layer can have a thickness of about 0.50 millimeters or more and/or a dielectric constant of about 2.3 or less to reduce the negative pixel effect.
摘要:
The apparatus immobilizes a wheel of a vehicle. A chock is connected to a facing bar. Also connected to the facing bar, spaced away from the chock is an engaging bar. The engaging bar has a first, generally elongated straight section and a second section that is shorter than the first straight section, and that is joined to one end of the first section such that the angle between the first section and a portion of the second section is between -45.degree. and +45.degree., preferably 0.degree.. The engaging bar is attached to the facing bar, such that the first straight section is generally perpendicular to the facing bar, the engaging bar is movable along its first section relative to the facing bar and the second section is rotatable around an axis coaxial with the first section. A lock locks the engaging bar at a desired position relative to the facing bar. The apparatus is arranged such that a user can engage it with a vehicle from a generally standing position, without the need to kneel or reach into the wheel well. The lock may comprise a locking element, locked by a key in a cooperating key receptacle and a detachable key blocker, which attaches to the key before it is removed from the receptacle. Typically, the key is a starter key for the vehicle to be immobilized, the key blocker attaching to the key such as to prevent use of the key to start the vehicle.
摘要:
Capacitive multi-touch sensor panels in which both row and column traces may be formed on a single conducting surface are disclosed. These stack-ups may be made thinner and more flexible allowing them to be particularly well-suited for curved or other non-flat touch sensor panels, such as those that might be present on a mouse or other device designed to be grasped by a user's hand. Curved sensor panel arrays that may be formed from flat substrates are also disclosed. These sensor panel configurations may include channels around the periphery of the array. These channels allow the flat array to lie flat when applied to a curved surface, such as the inside of the curved surface. The pattern of the touch sensor elements may be adjusted across the array to avoid the channels.
摘要:
A compact touch sensor and a touch sensor stack are disclosed. The touch sensor can include a touch sensor circuit integrated with a ground layer on a single substrate. The touch sensor circuit can include two sets of conductive traces separated by a first insulation layer. A second insulation layer can be deposited over the top set of conductive traces of the touch sensor circuit. One or more vias can be included within the first insulation layer to route one or more conductive traces through the first insulation layer. One or more vias can also be included within the substrate to couple one or more conductive traces to the grounding layer. The touch sensor can be laminated to a cover material to form the touch sensor stack. Processes for making the touch sensor and touch sensor stack are also disclosed.