Abstract:
Method, device, and computer program product that may improve communications between a mobile device and an access point device are disclosed. In one embodiment, an access point device includes a transceiver configured to receive signals from a mobile device, a processor coupled to the transceiver, and a memory coupled to the processor, the memory having stored thereon code configured to be executed by the processor, the code instructing the processor to: control a plurality of beacons in the access point device, obtain range measurements using the plurality of beacons in the access point device, and assist calibration of a beacon in the mobile device using the range measurements obtained by the plurality of beacons in the access point device.
Abstract:
Methods and apparatus for processing positioning assistance data are provided. An exemplary method includes receiving, from a positioning server, virtual access point (VAP) data including a list of unique identifiers, and determining a location of a mobile device by using the VAP. The VAP data indicates that the unique identifiers included on the list identify signals originating from the same physical access point. The unique identifiers can be MAC addresses. In an example, the location determining the can include actively scanning a signal identified by a unique identifier on the list and not actively scanning a different signal identified by a different unique identifier also on the list. Not scanning the other MAC addresses that are on the access point's list and assigned to the mobile device keeps the mobile device from performing duplicative scanning that wastes time, processor cycles, and energy.
Abstract:
Example methods, apparatuses, or articles of manufacture are disclosed herein that may be utilized, in whole or in part, to facilitate or support one or more operations or techniques for selective downloading of one or more positioning tiles using a cache of transmitter parameters, such as for use in or with a mobile communication device, for example.
Abstract:
Methods and devices are described for merging maps. In one potential embodiment a method may comprise receiving an indication of at least one plurality of geographically proximate points, where each of the at least one plurality of geographically proximate points are determined by at least one access point in communication with one or more mobile devices. A first and second map may then be received, where the first map and the second map each cover a first area such that the first area is in both the first map and the second map. The first map and the second map may then be merged by matching a mapping of a first portion of an indication of the at least one plurality of geographically proximate points on the first map and a second portion of an indication of an at least one plurality of geographically proximate points on the second map.
Abstract:
Techniques are provided, which may be implemented via various methods, apparatuses, and/or articles of manufacture. For example, an electronic device may obtain an estimated location of a mobile device, determine a quality of a geometric distribution of transmitting devices capable of transmitting wireless signals to the mobile device at the estimated location, and assign an uncertainty to the estimated location. In certain implementations, an electronic device may further determine an adapted transmission setting for a transmitting device and transmit a corresponding message to the transmitting device. In certain implementations, an electronic device may identify adapted assistance data for the mobile device and transmit a corresponding message to one or more other electronic devices.
Abstract:
Methods and apparatus for wireless communication in a mobile device that includes relinquishing a client side high level operation system (HLOS) internet protocol (IP) context of a user equipment (UE), when the UE, connected to a network via a Wireless Wide Area Network (WWAN) connection, is transported to a Wireless Local Area Network (WLAN) connection area. Aspects of the methods and apparatus include maintaining a Packet Data Protocol (PDP) context of the UE, when the UE, connected to the network via the WWAN connection, is transported to a WLAN connection area. Aspects of the methods and apparatus include setting a linger timer for a certain period of time to defer deactivation of the PDP context and deactivating the PDP context when the linger timer expires.
Abstract:
Systems, apparatus and methods for determining a cyclic shift delay (CSD) mode from a plurality of CSD modes is disclosed. A received OFDM signal is converted to a channel impulse response (CIR) signal in the time domain and/or a channel frequency response (CFR) signal in the frequency domain. Matched filters and a comparator are used to determine a most likely current CSD mode. Alternatively, a classifier is used with a number of inputs including outputs from two or more matched filters and one or more outputs from a feature extractor. The feature extractor extracts features in the time domain from the CIR signal and/or in the frequency domain from the CFR signal useful in distinguishing various CSD modes.
Abstract:
Methods, apparatuses, and devices are disclosed to estimate a position of a mobile device using, for example, beacon signals transmitted using virtual access points utilizing a single, physical transceiver. Determination that beacon signals emanate from a single, physical transceiver may be based, at least in part, on a similarity among acquired beacon signals conveying identifiers, such as media access control identification (MAC ID) addresses and/or basic service set identifiers (BSSIDs), and on measurement of beacon signal characteristics, such as received signal strength at a mobile device and/or round trip time between the mobile device and the transceiver.
Abstract:
Method, device, computer program product, and apparatus for performing and processing mobile device positioning are described. A mobile device can request vertical positioning assistance. The mobile device can receive vertical positioning assistance from a transmitter classified for vertical positioning assistance. The mobile device can receive optimized assistance data created in response to a particular positioning request. The optimized assistance data may be optimized for vertical position, horizontal positioning, or both usage types. The mobile device can receive usage type classifications directly from a transmitter. A server can receive and determine a request is a vertical positioning request. Vertical positioning can include determining one or more of: an altitude, floor, level, or any combination thereof, within the environment. Assistance data associated with a plurality of transmitters, vertical positioning assistance data from a transmitter classified for providing vertical assistance is selected and provided as vertical positioning assistance data.
Abstract:
Methods and devices are described for merging maps. In one potential embodiment a method may comprise receiving an indication of at least one plurality of geographically proximate points, where each of the at least one plurality of geographically proximate points are determined by at least one access point in communication with one or more mobile devices. A first and second map may then be received, where the first map and the second map each cover a first area such that the first area is in both the first map and the second map. The first map and the second map may then be merged by matching a mapping of a first portion of an indication of the at least one plurality of geographically proximate points on the first map and a second portion of an indication of an at least one plurality of geographically proximate points on the second map.