Abstract:
The present disclosure relates to heterojunction bipolar transistors for improved radio frequency (RF) performance. In this regard, a heterojunction bipolar transistor includes a base, an emitter, and a collector. The base is formed over the collector such that a base-collector junction is formed between the base and the collector. The base-collector junction is configured to become forward-biased at a first turn-on voltage. The emitter is formed over the base such that a base-emitter junction is formed between the base and the emitter. The base-emitter junction is configured to become forward-biased at a second turn-on voltage, as opposed to the first turn-on voltage. Notably, the second turn-on voltage is lower than the first turn-on voltage.
Abstract:
A method of making a capacitor with reduced variance comprises providing a bottom plate in a first metal layer, a first dielectric material over the bottom plate, and a middle plate in a second metal layer to form a first capacitor. The method also comprises measuring the capacitance of the first capacitor, and determining whether to couple none, one, or both of a second capacitor and a third capacitor in parallel with the first capacitor. The method may further comprise the steps of providing a second dielectric material over the middle plate, and providing a first top plate and a second top plate in a third metal layer to form the second capacitor, and a third capacitor. Electrical connections may be formed to couple one or both of the second capacitor and the third capacitor in parallel with the first capacitor based on the measured value of the first capacitor.
Abstract:
The present disclosure relates to heterojunction bipolar transistors for improved radio frequency (RF) performance. In this regard, a heterojunction bipolar transistor includes a base, an emitter, and a collector. The base is formed over the collector such that a base-collector junction is formed between the base and the collector. The base-collector junction is configured to become forward-biased at a first turn-on voltage. The emitter is formed over the base such that a base-emitter junction is formed between the base and the emitter. The base-emitter junction is configured to become forward-biased at a second turn-on voltage, as opposed to the first turn-on voltage. Notably, the second turn-on voltage is lower than the first turn-on voltage.
Abstract:
A method of making a capacitor with reduced variance comprises providing a bottom plate in a first metal layer, a first dielectric material over the bottom plate, and a middle plate in a second metal layer to form a first capacitor. The method also comprises measuring the capacitance of the first capacitor, and determining whether to couple none, one, or both of a second capacitor and a third capacitor in parallel with the first capacitor. The method may further comprise the steps of providing a second dielectric material over the middle plate, and providing a first top plate and a second top plate in a third metal layer to form the second capacitor, and a third capacitor. Electrical connections may be formed to couple one or both of the second capacitor and the third capacitor in parallel with the first capacitor based on the measured value of the first capacitor.
Abstract:
A transistor includes a sub-collector, a base, a collector between the sub-collector and the base, and an emitter on the base opposite the collector. The collector includes a first region adjacent to the base and a second region between the first region and the sub-collector. The first region has a graduated doping profile such that a doping concentration of the first region decreases in proportion to a distance from the base. The second region has a substantially constant doping profile. By providing the collector with a doping profile as described, the linearity of the transistor is significantly improved while maintaining the radio frequency (RF) gain thereof.