Abstract:
A method for fabricating a magnetic capacitor is provided. A first conducting material is deposited to form a first electrode layer. One or more first ferro-magnetic elements are deposited to form magnetic layer and are aligned and magnetized to produce a magnetic field. An insulating material is deposited to form an insulating layer. A second conducting material is deposited to form a second electrode layer. The one or more ferro-magnetic elements are aligned and magnetized to apply the magnetic field to the insulator layer so that the magnetic field is perpendicular to the first electrode layer and the second electrode layer, and so that the magnetic field is periodic along the length of the insulator layer and results in electric dipoles being formed in the insulator layer when a voltage is applied between the first electrode layer and the second electrode layer.
Abstract:
A phase corrector for laser trimming a component, the phase corrector comprising: a first correction structure located to a first side of the component, the first correction structure comprising first and second correction regions at first and second distances from the component; and a second correction structure located to a second side the component, the second correction structure comprising third and fourth correction regions at third and fourth distances from the component.
Abstract:
Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
Abstract:
A electronic device is provided. The electronic device includes a first electrode formed in a first layer; a second electrode formed in the first layer, wherein the first electrode and the second electrode are symmetrically disposed with respect to a first point; and a first floating metal ring formed in the first layer and enclosing the first electrode and the second electrode.
Abstract:
A memcapacitor device (100) includes a first electrode (104) and a second electrode (106) and a memcapacitive matrix (102) interposed between the first electrode (104) and the second electrode (106). Mobile dopants (111) are contained within the memcapacitive matrix (102) and are repositioned within the memcapacitive matrix (102) by the application of a programming voltage (126) across the first electrode (104) and second electrode (106) to alter the capacitance of the memcapacitor (100). A method for utilizing a memcapacitive device (100) includes applying a programming voltage (126) across a memcapacitive matrix (102) such that mobile ions (111) contained within a memcapacitive matrix (102) are redistributed and alter a capacitance of the memcapacitive device (100), then removing the programming voltage (126) and applying a reading voltage to sense the capacitance of the memcapacitive device (100).
Abstract:
A multilayer ceramic capacitor, whose CR product can be prevented from dropping with certainty even at a thickness of 1.0 μm or less, includes multiple unit capacitors wherein a part constituted by two adjacent internal electrode layers in the laminating direction and one dielectric layer present between the two internal electrode layers is defined as a unit capacitor. The capacitances of the unit capacitors arranged in the laminating direction exhibit a distribution that gradually increases from both ends in the laminating direction toward the inside, while gradually decreasing from the two apexes of increase toward the center in the laminating direction.
Abstract:
A capacitor assembly (1) for measuring the level of radio frequency voltage in a mass spectrometer. The assembly (1) includes an RF sensing capacitor (2) with first and second capacitor plates (3, 4), a rectifying circuit (5) and a vacuum housing feedthrough (6), all of which are mounted within a vacuum enclosure of the mass spectrometer. The first capacitor plate (3) is adapted for connection to a voltage source and mounted within the enclosure by first insulating spacers (31). The second capacitor plate (4) is nested within the first insulating spacers (31) and mounted within the enclosure by second insulating spacers (41). The rectifying circuit (5) is electrically connected to the second capacitor plate (4) and to the vacuum housing feedthrough (6).
Abstract:
To suppress changes in capacitance due to displacement between electrodes opposing each other across a dielectric layer, thereby allowing stable manufacturing of a capacitance device having a desired capacitance.The capacitance device according to the present invention is of a configuration including a dielectric layer (10), a first electrode (11) formed on a predetermined surface (10a) of the dielectric layer (10), and a second electrode (12) formed on a surface (10b) on the opposite side of the dielectric layer (10) from the predetermined surface (10a). The forms of the first and second electrodes (11, 12) are set so that even in the event that the first electrode (11) is relatively displaced regarding position in a predetermined direction as to the second electrode (12), the area of the opposing-electrode region between the first electrode (11) and to the second electrode (12) is unchanged.
Abstract:
Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
Abstract:
Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.