Abstract:
Disclosed herein are methods and devices for small-vessel access to the vasculature for vascular and cardiac procedures such as diagnostics and interventions, particularly methods and devices for radial, brachial, popliteal, pedal, carotid and/or axillary access to the vasculature. These methods and devices permit vascular and cardiac procedures to be carried out through small vessels, such as the radial or brachial arteries, with a reduced number of steps for the physician and reduced pain and trauma for the patient. As such, the devices and methods may improve a number of outcomes for the patient, such as by reducing the risk of bleeding complications and increasing the speed with which the patient resumes ambulation and other activities following the procedure.
Abstract:
A catheterization guidewire system provides a first wire for percutaneous insertion in a blood vessel. The first wire may include a lumen running from one end to the other, and a handle adjacent the proximal end for manipulation of the first wire about and along a central axis. A second wire may be inserted in the blood vessel over the first wire, and may have a handle adjacent a proximal end. With the first and second wires coupled together, either of the handles of the first and second wires may be used to manipulate both wires. The wires may be manipulated relative to one another by simultaneous use of both handles. The first wire may have a rigidity selected to allow crossing of a bifurcation in the blood vessel. A third wire, which may also have a handle, may be inserted in the blood vessel over the second wire. A catheter for insertion over at least one of the first, second, and third wires may be provided with a balloon and a stent placement apparatus.
Abstract:
Disclosed is an improved pointed instrument for insertion into blood vessels where an occlusion arises or terminates too closely to the insertion site for proper sheath placement. The pointed instrument exhibits supportive characteristics that allow for a sheath to be placed in an otherwise inaccessible insertion site. One embodiment of the present disclosure features a pointed instrument having a flexible portion, which is generally straight outside the body, but agglomerates once inside a blood vessel.
Abstract:
A catheter apparatus, tissue-engineered vessel and a method of using the tissue-engineered vessel are provided for the connection of two adjacent blood vessels. In some embodiments, the tissue engineered vessel may be affixed to a stent, or a stent may be inserted into an area to be treated first, and then the tissue-engineered vessel may be affixed to the stent. The tissue-engineered vessel may include a living adventitia, a decellularized internal membrane, and/or an endothelium.
Abstract:
Multiple-wire systems for the ablation of occlusions within blood vessels. Systems include two or more concentric wires configured for percutaneous insertion in a blood vessel, the wires configured to ablate an occlusion within the blood vessel.
Abstract:
A catheter system is provided for creating a fistula between blood vessels, using a first catheter with a piercing tool adjacent its distal end, and a second catheter with a receptor adjacent its distal end. The receptor includes an opening and a channel providing a guide surface for receiving the piercing tool. The receptor and piercing tool include one or more magnets to draw the piercing tool into the channel of the receptor. The piercing tool and the receptor are provided with a complementary configuration, such as a mating conical shapes. A third catheter may be provided with a double balloon for use in sealing off the fistula site. The piercing tool may be provided on a metal guidewire that includes a lumen with a distal opening. The piercing tool may include a base and a needle coupled to the base at a nominal angle of at least about 20-degrees. The piercing tool may be selectively moved between an extended position wherein the needle is positioned outside the guidewire at the nominal angle and a retracted position wherein the needle is positioned substantially within the guidewire.
Abstract:
According to a method of occluding a bodily fluid vessel, a catheter is provided that has a first passage. The first passage has an occlusion element housed therein. The catheter is positioned in the vessel, and the occlusion element is moved out of the passage and into the vessel to thereby occlude the vessel. A catheter is also disclosed that may be used with the above method.
Abstract:
A device for percutaneous insertion into a fluid passageway of a human body, such as an artery is provided with one or more thermocouples disposed on a flexible, resilient wire lead and coupled to a temperature monitor. The wire lead includes a distal portion formed in a single, oval, looped shape or a double, ovoid or basket-like, looped shape with the thermocouples disposed on a side or tip of the shape. The wire lead is configured, e.g., by insertion in a guidewire, for slidable movement through the artery to an area of interest, e.g., at a buildup of arteriosclerotic plaque, on an inner surface of the artery, to bring the thermocouple into resiliently biased contact with the inner surface at the area of interest for measurement of the temperature there.
Abstract:
Embodiments herein provide differential dilation stents for use in percutaneous interventions, such as transluminal bypass procedures. In some embodiments, the stents may be used in the process of creating an arteriovenous (AV) fistula during a percutaneous bypass procedure, and such stents may have two or more specialized regions that are configured to adopt a predetermined diameter, shape, and/or tensile strength upon insertion in order to suit the needs of the vessel or procedure. The disclosed stents may be used for creating and/or maintaining an arterial/venous fistula for bypass of an occlusion in a cardiac artery using a cardiac vein, or the femoral artery, for example using the tibial or popliteal vein.
Abstract:
A system for deploying a stent-graft from the femoral artery into the femoral vein and back into the femoral artery in order to bypass a femoral occlusion comprises a penetration catheter and a guidewire capture and stabilization catheter. The penetration catheter may be advanced contralaterally to a location above the occlusion and the capture and stabilization catheter may be introduced upwardly through the femoral vein. The penetration tool on the penetration catheter is used in multiple steps to deploy guidewires which are then used to deploy the stent-graft in the desired location.