Abstract:
The present disclosure relates to a technique for a sensor network, machine to machine (M2M) communication, machine type communication (MTC) and the Internet of Things (IoT). The present disclosure can be used for intelligent services (services related to a smart home, a smart building, a smart city, a smart car or a connected car, healthcare, digital education, retail business, security and safety and the like) on the basis of the technique. An operating method of a tethering device, according to an embodiment of the present invention, comprises the step of: selecting a first network and/or a second network according to the characteristic of a data request message received from a client device; and transmitting, to the client device, a response message received from a server through the at least one selected network.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for performing a handover by a terminal in a wireless communication system is provided. The method includes measuring a signal quality of a first network and determining whether the handover is required based on the signal quality of the first network, when the handover is determined to be required, communicating data through both a connection with the first network and a connection with a second network during a delay period and measuring the signal quality of the first network, when the delay period ends, determining whether to perform the handover based on the signal quality of the first network at a time when the delay period ends, and performing the handover.
Abstract:
The present invention is to process a request of an application layer in an electronic device, and a method for operating the electronic device comprises transmitting a request signal through a first interface, and, when a response signal corresponding to the request signal is not received before a timer expires, retransmitting another request signal through a second interface. The request signal and the another request signal correspond to a single request signal generated in the electronic device. Also, the present invention includes other embodiments than the described embodiments.
Abstract:
Disclosed is a method for receiving streaming service data in a mobile communication system supporting a plurality of radio access interfaces, comprising the steps of: operating in a first mode for receiving, from a server, streaming service data through a first interface among the plurality of radio access interfaces; and determining a transition to a second mode for receiving the streaming service data by using at least two radio access interfaces according to a radio network currently being used in the first mode.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for uploading data by a station (STA) in a mobile communication system supporting a plurality of radio access interfaces (RAIs) is provided. The method includes, upon detecting that there is content to be uploaded, determining whether a first RAI among the plurality of RAIs is available, and when the first RAI is available, transmitting a header message including information related to the content and a body message including at least one of a plurality of segments which are generated based on the content to a proxy server through the first RAI to upload the at least one of the plurality of segments to an original server.
Abstract:
The present disclosure relates to an apparatus and a method for controlling Transmission Control Protocol (TCP) connection close to improve a battery life time of a client such as a smart phone in a wireless communication system are provided. A method of operating a client in a wireless communication system includes determining a data transfer inactivity time of at least one of TCP connections, and closing the at least one of TCP connections at the data transfer inactivity time.
Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as a smart home, a smart building, a smart city, a smart car, a connected car, healthcare, digital education, smart retail, security and safety services. A method and an apparatus for controlling aperiodic traffic in an electronic device are provided. The method includes determining a delay allowed time for first traffic associated with the first application based on a prediction time of generation of second traffic associated with a second application and processing the first traffic associated with the first application based on the delay allowed time.
Abstract:
Disclosed is a 5G or pre-5G communication system. To this end, an electronic device transmits a request message to a server through each of a plurality of communication paths at least based on a multi-radio access technology, and receives a video segment from the server through each of the plurality of communication paths according to the request message. The electronic device estimates a transmission quality at each communication path on the basis of video segments received for each of the plurality of communication paths at a radio search point satisfying at least one preset condition. The electronic device can determine, by the transmission quality estimated according to each of the plurality of communication paths and the preset reference transmission quality, one communication mode, among a plurality of communication modes, for designating at least one communication path for supporting the video streaming, among the plurality of communication paths.
Abstract:
Embodiments of the disclosure relate to a fifth generation (5G) or pre-5G communication system for supporting a higher data transmission rate beyond the fourth generation (4G) communication system, such as long term evolution (LTE) are provided. The method for managing a channel in a wireless local area network (WLAN) system includes detecting a radar signal and determining an optimal channel based on history information of a channel and the detected radar signal.
Abstract:
The present disclosure relates to a device and method for transmitting and receiving data to and from a terminal in a wireless communication system. The method of operating the terminal in the wireless communication system may include the processes of comparing pre-stored domain name service (DNS) cache information with DNS inquiry information in a DNS inquiry if the DNS inquiry on a host is received from a uniform resource locator (URL) protocol handler, and transmitting internet protocol (IP) address information corresponding to the host to the URL protocol handler according to a compared result.