Abstract:
Described are clamps useful for temporarily holding a slider of a hard disk drive in a test socket for dynamic electrical testing of the slider, as well as related assemblies that include the test socket, a head-gimbal-assembly, a testing assembly, and related methods of use.
Abstract:
An apparatus includes a slider test socket. The slider test socket includes a clamp, which includes a body, a handle having an opening, and a plurality of arms that extend between the body at a first end of the clamp and the handle at a second end of the clamp.
Abstract:
A clamp for removably holding a slider includes a stationary frame that includes a stationary rear frame member at a rear portion of the frame, extending in a width direction, at least one spring extending in a horizontal plane, and an open space extending in a length direction and the width direction. The open space is defined in the length direction in part by a front contact surface at a forward portion of the clamp adapted to engage one end of the slider, and a rear contact surface at a rear portion of the clamp, and adapted to engage an opposite end of the slider. The spring connects the stationary frame with the front contact surface such that with deflection of the spring the front contact surface is moveable relative to the frame in a direction of a lengthwise axis of the clamp.
Abstract:
A data storage device can employ a gimbal tongue flexure suspended from a load beam with a transducing head mounted to the gimbal tongue flexure. The transducing head can be separated from a magnetic recording medium by an air bearing. At least one active or non-active damper may be positioned on a strut of the gimbal tongue flexure.
Abstract:
A data storage device may employ a suspension that positions a transducing head proximal a data storage medium. The suspension can consist of an active fiber composite that spans a portion of a loadbeam. The active fiber composite can be configured with at least one active fiber contacting a supporting layer.
Abstract:
A flex circuit including a multiple layer structure is disclosed. The multiple layered structure includes a first or top layer and a second or base layer. Top traces and bond pads are fabricated on the top or obverse layer and interlayer traces and bond pads are fabricated between the first and second layers to provide an electrical interconnect to electrical components on a head assembly. In an illustrated embodiment, the flex circuit includes portions including the first or base layer and the second or top layer and one or more reduced thickness portion including the first or base layer and not the second layer. In one embodiment, the gimbal portion of the flex circuit includes the first layer and not the second layer of the multiple layer structure and in another embodiment a bending portion of the flex circuit includes the first base layer and not the second layer of the multiple layered structure to provide a reduced thickness to facilitate bending, for example in a micro-actuation region of the load beam.
Abstract:
A head stack assembly for a hard disk drive includes a head gimbal assembly. The head gimbal assembly includes a slider, a plurality of microactuators, and a microactuator controller. The slider includes active components which are configured to perform drive operations in response to receiving control signals from a drive controller. The microactuators are configured to adjust the position of the slider relative to a magnetic disk during drive operations. The microactuator controller is configured to selectively couple the microactuators to a microactuator power source based on the control signals.
Abstract:
A head gimbal assembly for a hard disk drive includes a slider, a load beam, a gimbal, and a flexure. The gimbal is disposed between the load beam and the slider. The gimbal is configured to provide motive support to the slider as the slider moves in proximity to a media surface. The flexure is disposed between the gimbal and the slider. The flexure includes an electrical trace ribbon configured to provide electrical signal pathways to and from active components of the head gimbal assembly.
Abstract:
A head gimbal assembly for supporting a disk drive includes a slider, a load beam, a ring gimbal affixed to the load beam, a plurality of microactuators, and a flexure. The flexure includes a first end extending along the load beam through a center region of a longitudinal axis of the head gimbal assembly and second end that includes a plurality of bond pads electrically coupled to the slider. The flexure includes a plurality of support features. Each support feature of the plurality of support features spans a respective microactuator of the plurality of microactuators. Each support feature includes a support protrusion and a support base. Each support protrusion is coupled to the ring gimbal at a distal side of the respective microactuator and each support base is coupled to the flex circuit on a proximal side of the respective microactuator.
Abstract:
A head suspension assembly for supporting a read/write head of a disk drive located on a rotatable drive actuator arm is disclosed. The head suspension assembly includes a baseplate end proximate to and operatively connected to a first microactuator pair, the first microactuator pair communicatively coupled to a controller. The head suspension assembly also includes a load beam movably connecting the first microactuator pair to a second microactuator pair. The head suspension assembly also includes a head transducer end proximate to and operatively connected to the second microactuator pair, the second microactuator pair communicatively coupled to the controller. The read/write head is located proximate to the head transducer end, the read/write head being flexibly connected to the load beam, and the controller is configured to selectably transmit control signals to the first and second microactuator pairs in order to improve tracking control of the read/write head.