Abstract:
A biodegradable triblock copolymer comprising: an A-B-A′ structure wherein the A and A′ blocks each include polylactide, the B block includes from about 55 to about 100 mole percent of polytrimethylene carbonate and 0 to about 45 mole percent polylactide, and the biodegradable triblock copolymer overall includes from about 15 to about 25 mole percent of the polytrimethylene carbonate and from about 75 to about 85 mole percent of the polylactide. Also provided are compositions and implantable medical devices made therefrom.
Abstract:
A biodegradable triblock copolymer comprising: an A-B-A′ structure wherein the A and A′ blocks each include polylactide, the B block includes from about 55 to about 100 mole percent of polytrimethylene carbonate and 0 to about 45 mole percent polylactide, and the biodegradable triblock copolymer overall includes from about 15 to about 25 mole percent of the polytrimethylene carbonate and from about 75 to about 85 mole percent of the polylactide. Also provided are compositions and implantable medical devices made therefrom.
Abstract:
The present disclosure describes kits for surgical repair of soft tissue defects, including hernias. The kits include any combination of components selected from an implantable sheet, at least one loop tie, a delivery tool, a positioner, a rolling device, and a insertion member. Packaging for the kits and/or components and methods of using the kits and/or components are also provided.
Abstract:
The present disclosure describes kits for surgical repair of soft tissue defects, including hernias. The kits include any combination of components selected from an implantable sheet, at least one loop tie, a delivery tool, a positioner, a rolling device, and a insertion member. Packaging for the kits and/or components and methods of using the kits and/or components are also provided.
Abstract:
The invention relates to a disposable flexible membrane (1) suitable for adhesion to an objective lens, especially an objective of a camera for laparoscopic operations, the membrane (1) being transparent and comprising two opposite faces, a first face (4) comprising a hydrophobic surface, and a second face (6) comprising a surface of reversible adhesiveness. The invention further relates to a method for temporarily protecting the objective lens of a camera comprising the step of manually positioning such a membrane onto said lens and further manually removing said membrane from said lens.
Abstract:
A biodegradable triblock copolymer comprising: an A-B-A′ structure wherein the A and A′ blocks each include polylactide, the B block includes from about 55 to about 100 mole percent of polytrimethylene carbonate and 0 to about 45 mole percent polylactide, and the biodegradable triblock copolymer overall includes from about 15 to about 25 mole percent of the polytrimethylene carbonate and from about 75 to about 85 mole percent of the polylactide. Also provided are compositions and implantable medical devices made therefrom.
Abstract:
A biodegradable triblock copolymer comprising: an A-B-A′ structure wherein the A and A′ blocks each include polylactide, the B block includes from about 55 to about 100 mole percent of polytrimethylene carbonate and 0 to about 45 mole percent polylactide, and the biodegradable triblock copolymer overall includes from about 15 to about 25 mole percent of the polytrimethylene carbonate and from about 75 to about 85 mole percent of the polylactide. Also provided are compositions and implantable medical devices made therefrom.
Abstract:
A biodegradable triblock copolymer comprising: an A-B-A′ structure wherein the A and A′ blocks each include polylactide, the B block includes from about 55 to about 100 mole percent of polytrimethylene carbonate and 0 to about 45 mole percent polylactide, and the biodegradable triblock copolymer overall includes from about 15 to about 25 mole percent of the polytrimethylene carbonate and from about 75 to about 85 mole percent of the polylactide. Also provided are compositions and implantable medical devices made therefrom.
Abstract:
The present invention relates to an implant (10) comprising: a substrate (1) the surface of which comprising oxidized cellulose, said oxidized cellulose having a degree of oxidation ranging from 0.5 to 1, and a multilayer coating covering said substrate, said multilayer coating comprising at least a first layer (2) adjacent said substrate, said first layer being formed of chitosan, and a second layer (3) adjacent said first layer, said second layer being formed of oxidized cellulose having a degree of oxidation ranging from 0.5 to 1. The invention further relates to a method for preparing such an implant.
Abstract:
The present invention relates to a method for preparing a chitosan matrix having good mechanical properties comprising the steps of a) preparing a solution of chitosan, b) pouring the solution of a) into a mould in order to form a layer, c) lyophilizing the layer of b) in order to obtain a matrix of chitosan, d) sterilizing the matrix obtained in c) by water vapor treatment. The invention also relates to the matrices obtained and to surgical implants comprising such matrices. The invention further relates to a method for increasing the suture retention strength of a chitosan matrix obtained by lyophilization of a chitosan solution, and to a method for for decreasing the solubilization rate in hydrochloric acid of a chitosan matrix obtained by lyophilization of a chitosan solution, comprising the step of sterilizing said matrix by a water vapor treatment.