Abstract:
A frequency allocation method and device for an unauthorized frequency band. The method includes: a controller acquires a business load status of plural macro base stations having similar coverage ranges and operated by different operators, and generates, based on the business load status, allocation information about an unauthorized frequency band, to mutually exclusively allocate the unauthorized frequency band to plural macro base stations; the macro base stations receive the allocation information about the unauthorized frequency band, to determine the unauthorized frequency band monopolized by the macro base stations from an unauthorized frequency band resource, and generate indicative information about the monopolized unauthorized frequency band; and a small base station receives the indicative information, detects state of the unauthorized frequency band monopolized by the macro base stations, and dynamically accesses, according to a detecting result, a specific unauthorized frequency band in the unauthorized frequency band monopolized by the macro base stations.
Abstract:
A frequency allocation method and device for an unauthorized frequency band. The method includes: a controller acquires a business load status of plural macro base stations having similar coverage ranges and operated by different operators, and generates, based on the business load status, allocation information about an unauthorized frequency band, to mutually exclusively allocate the unauthorized frequency band to plural macro base stations; the macro base stations receive the allocation information about the unauthorized frequency band, to determine the unauthorized frequency band monopolized by the macro base stations from an unauthorized frequency band resource, and generate indicative information about the monopolized unauthorized frequency band; and a small base station receives the indicative information, detects state of the unauthorized frequency band monopolized by the macro base stations, and dynamically accesses, according to a detecting result, a specific unauthorized frequency band in the unauthorized frequency band monopolized by the macro base stations.
Abstract:
A device and method controlling working state change of a small cell and a base station including the device. The device includes: an information acquiring unit that acquires interference between a small cell to be controlled and an adjacent small cell and/or load of the small cell to be controlled; and a state change determination unit that determines working state change to be performed by the small cell to be controlled according to the acquired interference and/or load. The working state includes multiple sleep levels from low to high. A sleep degree of the small cell to be controlled in a low sleep level is less than a sleep degree of the small cell to be controlled in a high sleep level, the working state change being performed among multiple sleep levels.
Abstract:
A base station side device and method and user side device and method for wireless communication. The device includes: a sending unit configured to send instruction on an unauthorized frequency band detection to a user equipment (UE) served by the cell where the device is located; a receiving unit configured to receive from the UE a signal representing occupancy status of the unauthorized frequency band; and a determination unit configured to determine based on the signal received by the receiving unit whether to use the unauthorized frequency band for communication, the unauthorized frequency band occupancy status includes occupied/idle status and the type of the occupying system, and the type of occupying system includes one of an unauthorized communication system and an authorized communication system.
Abstract:
A wireless communication device and a wireless communication method. The wireless communication device for use on a base station side includes one or more processors. The processor is configured to determine start time and end time of data transmission on one or more auxiliary carriers on an unlicensed frequency band. The processor is further configured to control to send indication information about the start time and the end time to other base stations.
Abstract:
A device and method controlling working state change of a small cell and a base station including the device. The device includes: an information acquiring unit that acquires interference between a small cell to be controlled and an adjacent small cell and/or load of the small cell to be controlled; and a state change determination unit that determines working state change to be performed by the small cell to be controlled according to the acquired interference and/or load. The working state includes multiple sleep levels from low to high. A sleep degree of the small cell to be controlled in a low sleep level is less than a sleep degree of the small cell to be controlled in a high sleep level, the working state change being performed among multiple sleep levels.
Abstract:
A carrier allocating apparatus including processing circuitry and a method and terminal, where the processing circuitry is configured to: determine a carrier parameter according to parameter information of the terminal, where the carrier parameter is configured to indicate a carrier needed by the terminal, and the carrier parameter includes a carrier type, the carrier type includes a Legacy Carrier Type (LCT) and a New Carrier Type (NCT), where the parameter information of the terminal includes a current carrier configuration of the terminal and a service type; perform a corresponding carrier allocation on the basis of the determined carrier parameter. A demand for a carrier is determined according to parameter information of the terminal, and then the needed carrier is allocated to the terminal. The apparatus can improve quality of service of the terminal in a system and improve user experience.
Abstract:
A base station side device and method and user side device and method for wireless communication. The device includes: a sending unit configured to send instruction on an unauthorized frequency band detection to a user equipment (UE) served by the cell where the device is located; a receiving unit configured to receive from the UE a signal representing occupancy status of the unauthorized frequency band; and a determination unit configured to determine based on the signal received by the receiving unit whether to use the unauthorized frequency band for communication, the unauthorized frequency band occupancy status includes occupied/idle status and the type of the occupying system, and the type of occupying system includes one of an unauthorized communication system and an authorized communication system.
Abstract:
The present disclosure relates to wireless communication equipment and a wireless communication method. According to the wireless communication equipment for a base station side in an embodiment, the wireless communication equipment comprises one or multiple processors, and the one or multiple processors are configured to: determine to-be-transmitted communication content of a user equipment for a base station on a target unauthorized frequency band and estimate a transmission progress; and generate indicating information about the transmission progress, and add the indicating information into a communication frame of the user equipment for transmitting the indicating information.
Abstract:
A device and method controlling working state change of a small cell and a base station including the device. The device includes: an information acquiring unit that acquires interference between a small cell to be controlled and an adjacent small cell and/or load of the small cell to be controlled or load distributed by other small cells and to be borne by the small cell to be controlled; and a state change determination unit that determines working state change to be performed by the small cell to be controlled according to the acquired interference and/or load. The working state includes multiple sleep levels from low to high. A sleep degree of the small cell to be controlled in a low sleep level is less than a sleep degree of the small cell to be controlled in a high sleep level, the working state change being performed among multiple sleep levels.