Abstract:
A correction information generation section 50 emits measurement light having uniform intensity onto a polarized image acquisition section 20 acquiring a polarized image. Further, on the basis of a measured polarized image acquired from the polarized image acquisition section 20, the correction information generation section 50 generates variation correction information for correcting sensitivity variations caused in the measured polarized image due to difference in polarization direction, and causes a correction information storage section 30 to store the generated variation correction information. A correction processing section 40 then corrects the sensitivity variations caused in the polarized image acquired by the polarized image acquisition section 20 due to the difference in polarization direction by using the pre-generated variation correction information stored in the correction information storage section 30. Therefore, the polarized image outputted from the correction processing section 40 becomes a high-quality polarized image with, for example, its sensitivity variations corrected.
Abstract:
A correction information generation section 50 emits measurement light having uniform intensity onto a polarized image acquisition section 20 acquiring a polarized image. Further, on the basis of a measured polarized image acquired from the polarized image acquisition section 20, the correction information generation section 50 generates variation correction information for correcting sensitivity variations caused in the measured polarized image due to difference in polarization direction, and causes a correction information storage section 30 to store the generated variation correction information. A correction processing section 40 then corrects the sensitivity variations caused in the polarized image acquired by the polarized image acquisition section 20 due to the difference in polarization direction by using the pre-generated variation correction information stored in the correction information storage section 30. Therefore, the polarized image outputted from the correction processing section 40 becomes a high-quality polarized image with, for example, its sensitivity variations corrected.
Abstract:
A third imaging unit including a pixel not having a polarization characteristic is interposed between a first imaging unit and a second imaging unit including a pixel having a polarization characteristic for each of a plurality of polarization directions. A depth map is generated from a viewpoint of the first imaging unit by matching processing using a first image generated by the first imaging unit and a second image generated by the second imaging unit A normal map is generated on the basis of a polarization state of the first image. Integration processing of the depth map and the normal map is performed and a depth map with a high accuracy is generated. The depth map generated by the map integrating unit is converted into a map from a viewpoint of the third imaging unit, and an image free from deterioration can be generated.
Abstract:
A polarization imaging unit 20 acquires a polarized image including polarization pixels with a plurality of polarization directions. An information compression unit 40 sets reference image information based on polarized image information of reference polarization pixels with at least a plurality of polarization directions in the polarized image and generates difference information between the polarized image information of each of polarization pixels different from the reference polarization pixels in the polarized image and the reference image information. In addition, the information compression unit 40 reduces the amount of information of the difference information generated for each of the polarization pixels with the plurality of polarization directions to generate compressed image information including the reference image information and the difference information with the reduced amount of information. An information decoding unit 70 applies a decoding process corresponding to the compression process of the information compression unit 40 to the compressed image information acquired through a recording medium 50 or a transmission path 60 to generate the polarized image and outputs the polarized image to a polarized image using unit 80.
Abstract:
An image pickup unit 20 has a configuration in which non-polarizing pixels and polarizing pixels are disposed, the polarizing pixels being provided per angle in at least two polarization directions. A demosaicing unit 50 generates a non-polarized image, and a polarization component image per polarization direction, from a captured image generated by the image pickup unit 20. A polarization information generating unit 60 generates polarization information indicating the polarization characteristics of a subject included in the captured image, from the non-polarized image and the polarization component image generated by the demosaicing unit 50. As described above, the polarization information is generated with not only the polarization component image but also the highly-sensitive non-polarized image not having a decrease in the amount of light. Therefore, accurate polarization information can be acquired compared to a case where polarization information is generated on the basis of the polarization component image.
Abstract:
There is provided an eyeball observation device, which can stably detect a line of sight, the eyeball observation device including: at least one infrared light source configured to radiate polarized infrared light onto an eyeball of a user; and at least one imaging device configured to capture an image of the eyeball irradiated with the polarized infrared light and to be capable of simultaneously capturing a polarization image with at least three directions.
Abstract:
An imaging unit 20 has a configuration in which an identical polarization pixel block made up of a plurality of pixels with an identical polarization direction is provided for each of a plurality of polarization directions and pixels of respective predetermined colors are provided in the identical polarization pixel block. A correction processing unit 31 performs correction processing such as white balance correction on a polarized image generated by the imaging unit 20. A polarized image processing unit 32 separates or extracts a reflection component using the polarized image after the correction processing. By using a polarized image of the separated or extracted reflection component, for example, it is possible to generate normal line information with high accuracy.
Abstract:
An image processing apparatus includes a superimposition processing unit that performs a blending process for a plurality of continuously captured images, wherein the superimposition processing unit is configured to selectively input luminance signal information of a RAW image or a full color image as a processing target image and perform a superimposition process, and performs a process for sequentially updating data that is stored in a memory for storing two image frames so as to enable superimposition of any desired number of images.
Abstract:
The polarization imaging unit generates a polarized image including pixels for each of a plurality of polarization components. The demosaicing unit calculates a pixel signal for each polarization component by using the pixel signal of the target pixel of the polarized image and the pixel signal of the pixel for each of the identical polarization components located near the target pixel. In one example, a low frequency component is calculated for each polarization component using the pixel signal of the pixel located near the target pixel for each of the identical polarization components. In addition, component information indicating relationship between the low frequency component of the polarization component of the polarized image and the pixel signal of the target pixel is acquired. Furthermore, the pixel signal for each polarization component in the target pixel is calculated based on the low frequency component and the component information for each polarization component.
Abstract:
A depth map generation unit 22 generates a depth map that generates the depth map from images obtained by picking up a subject at a plurality of viewpoint positions by an image pickup unit 21. On the basis of the depth map generated by the depth map generation unit 22, an alignment unit 23 aligns polarized images obtained by the image pickup unit 21 picking up the subject at the plurality of viewpoint positions through polarizing filters in different polarization directions at the different viewpoint positions. A polarization characteristic acquisition unit 24 acquires a polarization characteristic of the subject from a desired viewpoint position by using the polarized images aligned by the alignment unit 23 to obtain the high-precision polarization characteristic with little degradation in temporal resolution and spatial resolution. It becomes possible to acquire the polarization characteristic of the subject at the desired viewpoint position.