Abstract:
An embodiment system includes: a first motion sensor configured to generate first sensor data indicative of a first type of movement of an electronic device; a first feature detection circuit configured to determine at least one orientation-independent feature based on the first sensor data; and a classifying circuit configured to determine whether or not the electronic device is located on a stationary surface based on the at least one orientation-independent feature.
Abstract:
System for detecting a touch gesture of a user on a detection surface, comprising: a processing unit; and an accelerometer to detect a vibration at the detection surface and generate a vibration signal. The processing unit is configured to: acquire the vibration signal, detect, in the vibration signal, a signal characteristic which can be correlated to the touch gesture of the user, detect, in the vibration signal, a stationarity condition preceding and/or following the detected signal characteristic, and validate the touch gesture in the event that both the signal characteristic and the stationarity condition have been detected. An electrostatic charge sensor may also be used as a further parameter to validate the touch gesture.
Abstract:
A remote access device and methods of operation thereof are provided for accessing a physical object or location. The remote access device includes an accelerometer, a wireless transmitter, and control circuitry. The control circuitry causes the wireless transmitter to transition between a first operating mode and a second operating mode in response to receiving signals from the accelerometer indicating a first change in motion states of the remote access device. The control circuitry causes the wireless transmitter to transition between a first operating mode and a second operating mode in response to receiving signals from the accelerometer indicating a second change in motion states of the remote access device. The control circuitry further causes the wireless transmitter to transition between the first operating mode and the second operating mode in response to receiving signals from the accelerometer indicating a third change in motion states of the remote access device.
Abstract:
A gesture-recognition system for a digital-pen-like device, envisages: at least one motion sensor to provide at least one motion signal indicative of movements of the digital-pen-like device; a gesture-recognition signal processor, coupled to the at least one motion sensor to process the motion signal and to implement a plurality of gesture recognition algorithms based on the motion signal, each of the gesture recognition algorithms being configured to recognize a corresponding gesture performed by a user of the digital-pen-like device; and a controller coupled to the gesture-recognition signal processor and transmitting gesture-recognition data indicative of a recognized gesture towards a host apparatus, with which the digital-pen-like device is associated.
Abstract:
An embodiment inertial measurement system includes: at least one motion sensor to output motion data with an output data rate (ODR) period; and a control unit coupled to the motion sensor to control operation thereof based on a power mode switching, according to which each ODR period includes: a first phase, in which the motion sensor is controlled in a condition of low power consumption; and a subsequent measurement phase, in which the motion sensor is controlled to perform measurements for generation of measurement data. The control unit adaptively adjusts the duration of the ODR period based on at least one check related to the measurement data generated during the measurement phase.
Abstract:
An electronic device determines an estimate ({circumflex over (q)}) of angular position as a function of an accelerometric signal (acc) supplied by an accelerometric sensor and as a function of at least one between a gyroscopic signal (gyro) supplied by a gyroscopic sensor and a magnetic signal (mag) supplied by a magnetic-field sensor. A processing module implements a complementary filter, which is provided with a first processing block, a second processing block, and a combination block. The first processing block receives the acceleration signal (acc) and an input signal (mag′) indicative of the magnetic signal (mag) and generates a geomagnetic quaternion (qAccMag). The second processing block receives a signal indicative of the gyroscopic signal (gyro) and generates a gyroscopic quaternion (qGyro). The combination block determines the estimate ({circumflex over (q)}) of angular position by complementarily combining the geomagnetic quaternion (qAccMag) and the gyroscopic quaternion (qGyro) based on a combination factor (K) that has a dynamic value and an adaptive value and that varies as a function of the operating conditions.
Abstract:
An electronic device has an input which, in operation, receives an input stream of accelerometer data samples indicative of acceleration values along at least one axis. The devices includes circuitry, coupled to the input. The circuitry, in operation, executes an automatic-learning algorithm on blocks of samples of the input stream of accelerometer data samples to identify, for each block, a corresponding condition-of-user-movement from among a plurality of determined conditions-of-user-movement. The circuitry generates a plurality of streams of samples based on the input stream of accelerometer data samples, and for each condition of movement identified, selects a corresponding stream of samples of the plurality of streams of samples. The circuitry executes a wrist-tilt gesture detection algorithm using samples of the selected stream of the plurality of streams of samples.
Abstract:
The present disclosure is directed to a device and method for detecting presence or absence of human speech. The device and method utilize a low-power accelerometer. The device and method generate an acceleration signal using the accelerometer, filter the acceleration signal with a band pass filter or a high pass filter, determine at least one calculation of the filtered acceleration signal, detect a presence or absence of a voice based on the at least one calculation, and output a detection signal that indicates the presence or absence of the voice. The device and method are well suited for portable audio devices, such as true wireless stereo headphones, that have a limited power supply.
Abstract:
System for detecting a touch gesture of a user on a detection surface, comprising: a processing unit; and an accelerometer to detect a vibration at the detection surface and generate a vibration signal. The processing unit is configured to: acquire the vibration signal, detect, in the vibration signal, a signal characteristic which can be correlated to the touch gesture of the user, detect, in the vibration signal, a stationarity condition preceding and/or following the detected signal characteristic, and validate the touch gesture in the event that both the signal characteristic and the stationarity condition have been detected. An electrostatic charge sensor may also be used as a further parameter to validate the touch gesture.
Abstract:
A remote access device and methods of operation thereof are provided for accessing a physical object or location. The remote access device includes an accelerometer, a wireless transmitter, and control circuitry. The control circuitry causes the wireless transmitter to transition between a first operating mode and a second operating mode in response to receiving signals from the accelerometer indicating a first change in motion states of the remote access device. The control circuitry causes the wireless transmitter to transition between a first operating mode and a second operating mode in response to receiving signals from the accelerometer indicating a second change in motion states of the remote access device. The control circuitry further causes the wireless transmitter to transition between the first operating mode and the second operating mode in response to receiving signals from the accelerometer indicating a third change in motion states of the remote access device.