Abstract:
A thin film transistor (TFT), method of manufacturing the TFT and a flat panel display having the TFT are disclosed. In one aspect, the TFT comprises a substrate and an active layer formed over the substrate, wherein the active layer is formed of oxide semiconductor, and wherein the active layer includes two opposing sides. The TFT also comprises source and drain regions formed at the opposing sides of the active layer, a first insulating layer formed over the active layer, a gate electrode formed over the active layer, a second insulating layer formed covering the first insulation layer and the gate electrode, and a first conductive layer formed on the source and drain regions and contacting the second insulating layer.
Abstract:
A thin film transistor substrate includes a base substrate, an active pattern provided on the base substrate and including a source electrode, a drain electrode and a channel between the source electrode and the drain electrode, a gate insulation layer provided on the active pattern, a gate electrode which is provided on the active pattern and overlaps the channel, a first contact pad disposed on at least one of the source electrode and the drain electrode and including a first metal, and a first non-conductive metal oxide layer on the base substrate to cover the gate electrode and including the first metal.
Abstract:
A display substrate includes an active pattern, a gate electrode, a first insulation layer and a pixel electrode. The active pattern is disposed on a base substrate. The active pattern includes a metal oxide semiconductor. The gate electrode overlaps the active pattern. The first insulation layer covers the gate electrode and the active pattern, and a contact hole is defined in the first insulation layer. The pixel electrode is electrically connected to the active pattern via the contact hole penetrating the first insulation layer. A first angle defined by a bottom surface of the first insulation layer and a sidewall of the first insulation layer exposed by the contact hole is between about 30° and about 50°.
Abstract:
A thin film transistor substrate includes a base substrate, an active pattern, a gate insulation pattern and a gate electrode. The active pattern is disposed on the base substrate. The active pattern includes a source electrode, a drain electrode, and a channel disposed between the source electrode and the drain electrode. The gate insulation pattern and the gate electrode overlap with the channel. The gate insulation pattern is disposed between the channel and the gate electrode. The source electrode and the drain electrode each include a fluorine deposition layer.
Abstract:
A touch screen panel includes a substrate and a transparent electrode. The transparent electrode is disposed on a display area of the substrate and includes an adhesion layer, a metal layer disposed on the adhesion layer and a protecting layer disposed on the metal layer. A thickness of the metal layer is about 150A to about 250A. A thickness of the adhesion layer or a thickness of the protecting layer is about 50A to about 140A.
Abstract:
A display substrate includes a base substrate, a data line disposed on the base substrate, a gate line crossing the data line, a first insulation layer disposed on the base substrate, an active pattern disposed on the first insulation layer and comprising a channel comprising an oxide semiconductor, a source electrode connected to the channel, and a drain electrode connected to the channel, a second insulation layer disposed on the active pattern, and contacting to the source electrode and the drain electrode, a gate electrode disposed on the second insulation layer, and overlapping with the channel, a passivation layer disposed on the gate electrode and the second insulation layer, and a pixel electrode electrically connected to the drain electrode through a first contact hole formed through the passivation layer and the second insulation layer.