Abstract:
A liquid crystal display panel includes unit pixels including a first unit pixel and a second unit pixel, each of the first unit pixel and the second unit pixel including a first white area and first to third color areas, gate lines which extend in a first direction, cross the unit pixels and include a first gate line and a second gate line, data lines which extend in a second direction, and pixel electrodes which are electrically connected to the data lines and include first to seventh pixel electrodes, where the first to third pixel electrodes overlap the first to third color areas of the first unit pixel, respectively, the fourth to sixth pixel electrodes overlap the first to third color areas of the second unit pixel, respectively, and the seventh pixel electrode overlaps the first white areas of the first and second unit pixels.
Abstract:
A photoluminescent panel includes a lower substrate, an upper substrate facing the lower substrate, a liquid crystal layer disposed between the lower substrate and the upper substrate, and a color conversion layer disposed on the upper substrate. The color conversion layer includes a light excitation particle which absorbs light having a desired wavelength and emits excited light, and a scattering particle which scatters the excited light.
Abstract:
A photoluminescent panel includes a lower substrate, an upper substrate facing the lower substrate, a liquid crystal layer disposed between the lower substrate and the upper substrate, and a color conversion layer disposed on the upper substrate. The color conversion layer includes a light excitation particle which absorbs light having a desired wavelength and emits excited light, and a scattering particle which scatters the excited light.
Abstract:
A display apparatus includes: a display panel including first to third sub pixels which receive a first grayscale data, a second grayscale data and a third grayscale data, respectively; a light source part which provides light to the display panel and sequentially turns on first and second light sources, which emit a first light and a second light having a color different from the first light, respectively; and a color conversion layer including a first photoluminescence part which is excited by the first light to emit light having a first primary color, a second photoluminescence part which is excited by the first light to emit light having a second primary color, and a third photoluminescence part which is excited by the first light to emit light having a third primary color, where the first to third photoluminescence parts overlap the first to third sub pixels, respectively.
Abstract:
A photoluminescent panel includes a lower substrate, an upper substrate facing the lower substrate, a liquid crystal layer disposed between the lower substrate and the upper substrate, and a color conversion layer disposed on the upper substrate. The color conversion layer includes a light excitation particle which absorbs light having a desired wavelength and emits excited light, and a scattering particle which scatters the excited light.
Abstract:
An organic light-emitting display apparatus includes: a substrate including a first surface and a second surface opposite to each other; an organic emission unit disposed on the first surface of the substrate and including: an emission region configured to emit light; and a first transmission region configured to transmit external light; an encapsulation unit joined to the first surface of the substrate, the encapsulating unit configured to seal the organic emission unit from external air; a first optical layer configured to delay a phase of the external light; and a second functional layer configured to linearly polarize the external light, wherein the second function layer is disposed farther from the organic emission unit than the first functional layer and includes a second transmission region corresponding to the first transmission region.
Abstract:
A display apparatus includes a display panel including a first subpixel having a first primary color, a second subpixel having a second primary color; and a transparent subpixel; a panel driver which sets grayscale data of the first subpixel, the second subpixel and the transparent subpixel; a light source part which provides light to the display panel, where the light source comprises a first light source and a second light source having colors different from each other; and a light source driver which turns on the first light source during a first subframe, turns on the second light source during a second subframe, and turns on the first light source during a third subframe, and a first frame comprises the first subframe, the second subframe and the third subframe.
Abstract:
A photosensitive resin composition includes about 60% by weight to about 95% by weight of a solvent based on a total weight of the photosensitive resin composition and about 5% by weight to about 40% by weight of a solid based on the total weight of the photosensitive resin composition. The solid includes about 5% by weight to about 90% by weight of quantum dots based on a total weight of the solid. A center luminescence wavelength of the quantum dots is about 900 nm to about 2000 nm.
Abstract:
A display substrate includes a base substrate, a color filter layer and a retarder layer. The base substrate includes a first sub pixel area, a second sub pixel area and a third sub pixel area. The color filer layer is disposed on a front surface of the base substrate, and includes at least one of a magenta color filter, a cyan color filter and a yellow color filter in the first sub pixel area and the second sub pixel area and a white color filter in the third sub pixel area. The retarder layer is disposed on a rear surface of the base substrate opposite to the front surface of the base substrate. The retarder layer is configured to polarize light in the first sub pixel area and the second sub pixel area to form a first polarized light. The retarder layer is further configured to polarize the light in the third sub pixel area to form a second polarized light, the second polarized light being different from the first polarized light. Thus, a driving speed of a display apparatus may be decreased.
Abstract:
A display apparatus includes a display panel, a panel driving part and a light-source part. The panel driving part provides the display panel with a first sub-frame data during a first sub-frame of an N-th frame (N is a natural number), provides the display panel with a second sub-frame data during a second sub-frame of the N-th frame and providing the display panel with a third sub-frame data during a third sub-frame of the N-th frame, the first sub-frame data including a plurality of data blocks, the data blocks adjacent to each other having color pixel data different from each other, the second sub-frame data including a plurality of data blocks having a color sequence different from the first sub-frame data, and the third sub-frame data including a plurality of data blocks having the color sequence different from the first and second sub-frame data.