Abstract:
A touch panel, including a polyurethane substrate; a touch electrode including a first electrode layer on the polyurethane substrate, the first electrode including nanowires; and a polyurethane overcoat layer on the touch electrode, the polyurethane overcoat layer having an in-plane phase difference smaller than that of the polyurethane substrate.
Abstract:
A display panel including a first switching element, a first pixel electrode electrically connected to the first switching element, the first pixel electrode including a reflective material. A first light emitting layer is disposed on the first pixel electrode, and emits light having a first color when a voltage is applied to the first pixel electrode. A thin encapsulation film is disposed on the first light emitting layer, and protects the first light emitting layer. A pressure sensitive adhesive layer is disposed on the thin encapsulation film, and a first color filter is disposed on the pressure sensitive adhesive layer, corresponding to the first light emitting layer, and has the first color.
Abstract:
A flexible display device includes a bending area including a display panel, an optical member, a polarization member, and a window member, and a non-bending area. A bending part of the optical member includes a plurality of optical patterns corresponding to the bending area, and the plurality of optical patterns are provided to have different widths at a face adjacent to the display panel and a face adjacent to the polarization member. Light leakage phenomenon and color shift phenomenon induced by the modification of the optical member in the bending area during bending of the display device may be improved.
Abstract:
A liquid crystal display includes first and second substrates facing each other, the first and second substrates including facing display areas and peripheral areas around the display areas, a plurality of pixels on the display area of the first substrate, a common voltage applying unit on the peripheral area of the first substrate, a data driving circuit unit on the peripheral area of the first substrate, a data driver connecting line on the peripheral area of the first substrate, the data driver connecting line being positioned between the common voltage applying unit and the display area of the first substrate, and connecting the data driving circuit unit and a data line in the display area, and a sealant between the peripheral areas of the first and second substrates and covering the common voltage applying unit and part of the data driver connecting line.
Abstract:
A display device includes a first polarizer for transmitting first light that is parallel to a first axis and pertains to a two-dimensional image. The display device further includes a first electrode layer, a second electrode layer, and a liquid crystal layer disposed between the first electrode and the second electrode. The liquid crystal layer includes a chiral dopant and a liquid crystal material and is configured to form a lens associated with a predetermined phase distribution. The lens is configured for refracting the first light to transmit second light. The display device further includes a second polarizer for polarizing the second light to transmit third light that is parallel to a second axis. The second axis is oriented at an angle with respect to the first axis in a plan view of the display device. The angle has a predetermined angle size greater than zero degree.
Abstract:
The described technology relates generally to a display device, and the display device according to an exemplary embodiment includes: a main panel; an auxiliary panel positioned at two opposing edges of the main panel; and a cover glass covering a front surface of the main panel and the auxiliary panel, wherein the auxiliary panel has a curved shape.
Abstract:
An organic light emitting diode display according to the present invention includes a substrate assembly including a substrate with a driving transistor thereon, and an organic light emitting element including a single molecular layer and configured to emit white light, a touchscreen panel on the substrate assembly, a window on the touchscreen panel, and a color filter layer on the substrate assembly and including a first color filter, a second color filter, and a third color filter, wherein the first to third color filters respectively correspond to different colors.
Abstract:
A foldable display is disclosed. In one aspect, the foldable display includes a foldable display panel and a folding adjustment part configured to adjust a folding configuration of the foldable display panel. The foldable display also includes a folding sensor configured to sense the folding configuration, a rear surface touch sensor configured to sense a touch input applied to a rear surface of the foldable display panel, and a controller. The controller is configured to detect first and second touch inputs applied to different portions of the rear surface and control the folding adjustment part so as to switch the folding configuration of the foldable display panel when the controller detects that the first touch input moves in a first direction and the second touch input moves in a second direction different from the first direction.
Abstract:
A display device is provided. The display device includes an anti-reflection film. The anti-reflection film includes a base film, a retardation coating layer disposed on a first side of the base film so as to delay a phase of transmitted light, and a polarizer coating layer disposed on a second side of the base film so as to allow a polarization component of the transmitted light in a specific direction to pass through, wherein the retardation coating layer and the polarizer coating layer are formed by applying a liquid crystal on the base film.
Abstract:
A polarizer including a base film, a first alignment layer disposed on the base film, a phase delay layer disposed on the first alignment layer, a second alignment layer disposed on the phase delay layer, and a polarizing layer disposed on the second alignment layer. The phase delay layer includes a first liquid crystal composition including first liquid crystals, a first antioxidant, and a derivative thereof.