Abstract:
A manufacturing method of a display device according to an embodiment includes forming a bank separating a first opening, a second opening, and a third opening on a first substrate, forming a scatterer layer in the first opening, the second opening, and the third opening, forming a first ink layer in the first opening, forming a second ink layer in the second opening, and forming a third ink layer in the third opening.
Abstract:
A liquid crystal display including a first substrate; a second substrate on the first substrate; a liquid crystal layer between the first substrate and the second substrate; a first alignment layer between the first substrate and the liquid crystal layer and including a first polymer; a second alignment layer between the second substrate and the liquid crystal layer and including a second polymer; and protrusions between the first alignment layer and the liquid crystal layer, wherein at least one of the protrusions includes an alignment polymer polymerized with a reactive mesogen, the first polymer includes a first main chain and a plurality of first side chains connected to the first main chain, and at least one of the plurality of first side chains includes a photoreactive group and a photoreactive derivative, and wherein the photoreactive group has an absorbance that is greater than that of the reactive mesogen.
Abstract:
A curved liquid crystal display (“LCD”) includes a thin film transistor (“TFT”) array substrate, a counter substrate facing the TFT array substrate, a liquid crystal layer including liquid crystal molecules of negative dielectric anisotropy and disposed between the TFT array substrate and the counter substrate, a liquid crystal alignment layer disposed between the liquid crystal layer and the counter substrate, a liquid crystal alignment base layer disposed between the liquid crystal layer and the TFT array substrate, and a liquid crystal alignment stabilization layer including projections spaced apart from each other on the liquid crystal alignment base layer between the liquid crystal layer and the liquid crystal alignment base layer, wherein the projections include reactive mesogen polymers, and one of the liquid crystal alignment layer and the liquid crystal alignment base layer includes the reactive mesogen polymers.
Abstract:
A method of manufacturing a quantum dot, the method including preparing a CdS/CdSe/CdS quantum dot that includes a CdS-containing first core, a CdSe-containing second core, and a CdS-containing shell; forming a Cu2S/Cu2Se/Cu2S quantum dot by injecting the CdS/CdSe/CdS quantum dot into a solution containing a Cu precursor; and forming a ZnS/ZnSe/ZnS quantum dot by injecting the Cu2S/Cu2Se/Cu2S quantum dot into a solution containing a Zn precursor.
Abstract:
A color conversion panel includes a substrate, a color conversion layer, a transmission layer, and a blue light cutting filter. The color conversion layer is disposed on the substrate. The color conversion layer includes a quantum dot. The transmission layer is disposed on the substrate. The blue light cutting filter is disposed between the substrate and the color conversion layer. An interface between the color conversion layer and the blue light cutting filter includes irregularities.
Abstract:
The present inventive concept relates to a curved liquid crystal display having improved transmittance, and the curved liquid crystal display according to an exemplary embodiment of the present inventive concept includes: a first substrate and a second substrate facing each other, the first substrate and the second substrate being curved to have a predetermined radius of curvature; and a liquid crystal layer interposed between the first substrate and the second substrate, wherein the liquid crystal layer includes nematic liquid crystal molecules that are continuously twisted from the first substrate to the second substrate.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present inventive concept includes: a first insulating substrate; a gate line and a data line, a thin film transistor connected to the gate line and the data line, a pixel electrode connected to the thin film transistor, and a second insulating substrate facing the first insulating substrate, wherein one pixel includes the thin film transistor and the pixel electrode and includes a first sub-region and a second sub-region which are separated by the gate line intervened therebetween, the high gradation sub-pixel electrode includes a first high gradation sub-pixel electrode disposed in the first sub-region, and a second high gradation sub-pixel electrode disposed in the second sub-region, and the low gradation sub-pixel electrode includes a first low gradation sub-pixel electrode disposed in the first sub-region, and a second low gradation sub-pixel electrode disposed in the second sub-region.
Abstract:
A display device includes: a substrate including a first emission area, a second emission area, and a third emission area; a first wavelength conversion pattern overlapping the first emission area; a second wavelength conversion pattern overlapping the second emission area; and a light-transmitting pattern overlapping the third emission area, wherein the first wavelength conversion pattern includes first wavelength shifters configured to convert a first light into a second light, and first scatterers, the second wavelength conversion pattern includes second wavelength shifters configured to convert the first light into a third light, and second scatterers, and a ratio between a concentration of the first wavelength shifters and a concentration of the second wavelength shifters is 1:1.1 to 1:1.3.
Abstract:
A light emitting display device according to an exemplary embodiment of the present disclosure includes: a first substrate; an insulating layer disposed on the first substrate and having an inclined portion; a first electrode disposed on the insulating layer; a light-emitting layer disposed on the first electrode; a second electrode disposed on the light-emitting layer; and a plurality of color conversion layers disposed on the second electrode. The first electrode includes an inclined portion that is inclined along the inclined portion of the insulating layer based on a surface parallel to the first substrate, and the light-emitting layer includes semiconductor nano-particles.
Abstract:
A liquid crystal display includes: a first substrate, a second substrate overlapping the first substrate, a liquid crystal layer positioned between the first substrate and the second substrate and including a plurality of liquid crystal molecules, a first alignment layer positioned between the first substrate and the liquid crystal layer, a second alignment layer positioned between the second substrate and the liquid crystal layer, and a plurality of protrusions positioned at at least one of between the first alignment layer and the liquid crystal layer and between the second alignment layer and the liquid crystal layer, wherein at least one among the plurality of protrusions includes a polymer of a reactive mesogen, and the reactive mesogen is represented by Chemical Formula 1: Pa-A1-OCH2nO-A2-Pb Chemical Formula 1