Abstract:
A display device includes: a first substrate; a plurality of metal layers on the first substrate and separated from each other; a buffer layer on the metal layer; a semiconductor layer on the buffer layer; a gate conductive layer on the semiconductor layer; a data conductive layer connected to the semiconductor layer; and a light-emitting element connected to the data conductive layer, wherein the metal layer includes a first portion partially overlapping the semiconductor layer in a third direction perpendicular to the surface of the first substrate, a second portion where the metal layer completely overlaps the semiconductor layer in the third direction, and a third portion where the metal layer does not overlap the semiconductor layer in the third direction.
Abstract:
A display substrate includes a base substrate comprising a plurality of sub-pixels, a first switching element disposed on the base substrate and electrically connected to a gate line extending in a first direction and a data line extending in a second direction crossing the first direction, a color filter layer disposed on the switching element and comprising a red color filter, a green color filter, a blue color filter and a white color filter alternately disposed on the plurality of sub-pixels, respectively, a column spacer disposed on the color filter and comprising the same material as that of the white color filter, an insulation layer disposed on the color filter and the column spacer and a pixel electrode disposed on the insulation layer.
Abstract:
A liquid crystal display (LCD) includes: a curved liquid crystal panel; and a driving device for displaying an image by operating the curved liquid crystal panel, wherein a luminance curve for a gray level for generating a gray-level voltage to be applied by the driving device to a first color pixel disposed in an edge portion of the curved liquid crystal panel is disposed below a luminance curve for a gray level for generating a gray-level voltage to be applied to the first color pixel disposed in a remaining portion of the curved liquid crystal panel.
Abstract:
A curved display device includes a first substrate, a pixels and a second substrate. The first substrate is curved along a first direction and includes a pixel area through which light is transmitted and a non-pixel area which blocks light transmission therethrough. The pixel is disposed in the pixel area. The second substrate is curved along the first direction, and is opposite to and coupled to the first substrate. First trenches are defined in at least one substrate among the first and second substrates and extending in a second direction intersecting the first direction.
Abstract:
Provided are a liquid crystal display panel and a manufacturing method thereof, and more particularly, a liquid crystal display panel including white pixels and a manufacturing method thereof. The liquid crystal display panel includes: a first substrate and a second substrate facing each other; a liquid crystal layer positioned between the first substrate and the second substrate; a plurality of color filters positioned on the first substrate and representing different colors from each other, in which at least two of the plurality of color filters overlap with each other on the first substrate to form an overlapping portion, and the overlapping portion forms a first spacer; a transparent filter positioned on the first substrate and positioned in a transmitting area of a white pixel; and a second spacer including the same material as the transparent filter.
Abstract:
A curved display device includes a first substrate, a second substrate facing the first substrate, a liquid crystal layer disposed between the first substrate and the second substrate, and a first color pixel area, a second color pixel area, a third color pixel area, and a fourth color pixel area disposed on the first substrate or the second substrate, in which the first substrate and the second substrate each includes a center portion and an edge portion surrounding the center portion, the first, second, and third color pixel areas include a red filter, a green filter, and a blue filter, respectively, the fourth color pixel area include a white filter, and the fourth color pixel area is disposed at the edge portion of the first or second substrate, and is smaller than each of the first, second, and third color pixel areas.
Abstract:
An exemplary embodiment of the present invention provides a display device including red pixels, blue pixels, green pixels, and white pixels, a plurality of gate lines, and a plurality of data lines, wherein the red pixels, the blue pixels, and the green pixels are disposed to longitudinally extend in a vertical direction, and the white pixels are disposed to longitudinally extend in a horizontal direction below or above the red pixels, the blue pixels, and the green pixels.
Abstract:
A display device includes a red pixel, a blue pixel, a green pixel, and a white pixel; a plurality of gate lines and data lines; and a plurality of storage electrode lines. Each of the red pixel, the blue pixel, and the green pixel includes two subpixel electrodes connected to a same gate line and a same data line and charged with different voltages. Every subpixel electrode included in the white pixel and connected to a same gate line and a same data line have a same voltage.
Abstract:
Provided are a liquid crystal display panel and a manufacturing method thereof, and more particularly, a liquid crystal display panel including white pixels and a manufacturing method thereof. The liquid crystal display panel includes: a first substrate and a second substrate facing each other; a liquid crystal layer positioned between the first substrate and the second substrate; a plurality of color filters positioned on the first substrate and representing different colors from each other, in which at least two of the plurality of color filters overlap with each other on the first substrate to form an overlapping portion, and the overlapping portion forms a first spacer; a transparent filter positioned on the first substrate and positioned in a transmitting area of a white pixel; and a second spacer including the same material as the transparent filter.
Abstract:
A method of driving a display panel comprises applying a first set of pixel voltages including a positive pixel voltage (+) and a negative pixel voltage (−) to subpixels of a display panel in an N-th frame, applying a second set of pixel voltages having polarities opposite to polarities of the first set of the pixel voltages to the subpixels of the display panel in an (N+1)-th frame and applying compensating values which are varied for respective data lines of the display panel. N is a natural number. A corresponding display panel is also disclosed.