Abstract:
An electronic device is provided. The electronic device includes a housing, a power interface exposed through at least a portion of the housing to be connected to an external power source in a wired manner or disposed inside the housing to be connected to the external power source in a wireless manner, at least one battery disposed inside the housing and electrically connected to the power interface, a processor disposed inside the housing and operatively connected to the power interface, and a memory disposed inside the housing and operatively connected to the processor. The memory stores instructions that, when executed, causes the processor to, in a state in which an external power is supplied through the power interface, when a voltage of the battery reaches a first voltage value, lower the voltage of the battery to a second voltage value lower than the first voltage value by discharging the battery after a first time has elapsed from a time point at which the voltage of the battery reaches the first voltage value.
Abstract:
A method of controlling charging of a plurality of batteries and an electronic device to which the same is applied are provided. The electronic device includes a housing, a plurality of batteries arranged in the housing, a power management module that controls the plurality of batteries, a plurality of current limiting ICs that limits a maximum intensity of a current flowing into each of the plurality of batteries, and at least one processor operationally connected to the plurality of batteries, the power management module and the plurality of current limiting ICs. The at least one processor may set a total charging current output from the power management module, set an individual charging current flowing into each of the plurality of batteries in proportion to a total capacity of each of the plurality of batteries, and recalculate the individual charging currents when the total charging current changes.
Abstract:
According to various embodiments, an electronic device comprises a battery, a wireless interface including a coil and configured to wirelessly transmit electric power from the battery via the coil, and at least one processor configured to: perform a wireless charging function of wirelessly transmitting electric power to an external device via the wireless interface, while neither the electronic device nor the external device is being supplied with electric power from an external power source via a wire, and based on identifying that the external device starts being supplied with electric power from an external power source via a wire while performing the wireless charging function, stop performing the wireless charging function of wirelessly transmitting electric power to the external device.
Abstract:
Provided a package substrate including an insulation substrate, a conductive layer provided in the insulation substrate, upper pads provided on an upper surface of the insulation substrate and electrically connected to the conductive layer, lower pads provided on a lower surface of the insulation substrate and electrically connected to the conductive layer, and at least one trench provided at a portion of the insulation substrate adjacent to at least one of the upper pads and configured to block stress, which is generated by an expansion of the insulation substrate, from spreading to the at least one of the upper pads.
Abstract:
A method of saving the power of a portable electronic device is provided. The method includes starting a power saving mode, identifying an application executed in a foreground, and changing operation settings of the portable electronic device for the identified application.
Abstract:
Provided a package substrate including an insulation substrate, a conductive layer provided in the insulation substrate, upper pads provided on an upper surface of the insulation substrate and electrically connected to the conductive layer, lower pads provided on a lower surface of the insulation substrate and electrically connected to the conductive layer, and at least one trench provided at a portion of the insulation substrate adjacent to at least one of the upper pads and configured to block stress, which is generated by an expansion of the insulation substrate, from spreading to the at least one of the upper pads.
Abstract:
A method of controlling a plurality of batteries and an electronic device to which the same is applied. The electronic device includes a housing and a plurality of batteries. The electronic device also includes a power management module, a plurality of current limiting ICs, and a processor operationally connected to the plurality of batteries, the power management module and the plurality of current limiting ICs. The processor is configured to sense a sum of the currents flowing into the plurality of batteries or a voltage of the power management module, perform a primary end of reducing a magnitude of the sum of the currents flowing into the plurality of batteries, sense the currents or voltages of the plurality of batteries, and perform a secondary end of blocking a current flowing into a battery.
Abstract:
An electronic device is provided. The electronic device includes a housing, a first battery and a second battery arranged in the housing, a power management module, a first temperature sensor, a second temperature sensor, a first current limiting integrated circuit (IC) configured to limit a maximum intensity of a first current flowing into the first battery, a second current limiting IC configured to limit a maximum intensity of a second current flowing into the second battery, and a processor. The processor may determine whether the first temperature or the second temperature is outside a specified temperature range and, when the first temperature is outside of the specified temperature range, control the first current limiting IC to reduce a magnitude of the first current.
Abstract:
An electronic device includes a display and a processor, and wherein the processor is configured to display a calendar and a text input part within a user interface of a software application for schedule management, identify that a first part and a second part of text included in the text input part represent time information based on a first user input, identify the first part as first time information and identify the second part as second time information, identify a third part of text, which is different from the first part, as first title information of the first schedule and identify a fourth part of text, which is different from the second part, as second title information, and display the first title information and the second title information, in response to a second user input.
Abstract:
A method of saving the power of a portable electronic device is provided. The method includes starting a power saving mode, identifying an application executed in a foreground, and changing operation settings of the portable electronic device for the identified application.