Abstract:
Embodiments herein provide a method for managing HARQ procedure for multiple numerologies multiplexing in a wireless communication network. The method includes transmitting, by a User Equipment (UE), capability parameters of the UE to a Base Station (BS). Further, the method includes receiving, by the UE, a plurality of HARQ configuration parameters corresponding to the capability parameters of the UE from the BS, and perfuming, by the UE, one of an individual HARQ process and a shared HARQ process based on the plurality of HARQ configuration parameters received from the BS.
Abstract:
A system and method for use in a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE) is disclosed. The method for performing a discovery transmission on a second carrier by a user equipment (UE) served by a primary cell (PCell) on a first carrier, includes receiving, from a base station, a signaling indicating that the UE read discovery resource configuration for the second carrier on the second carrier or that the UE should request the discovery resource configuration for the second carrier from the base station for acquiring the discovery resource configuration for the second carrier. The method also includes acquiring the discovery resource configuration based on the signaling.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for transmitting a device to device (D2D) discovery signal by a user equipment (UE) in a communication system supporting a D2D scheme is provided. The method includes determining transmission power for D2D discovery signal transmission, and transmitting a D2D discovery signal using the transmission power, wherein the transmission power is determined by considering a cell at which the D2D discovery signal is transmitted.
Abstract:
The present invention relates not only to a fourth-generation (4G) communication system, such as long-term evolution (LTE), but also to a fifth-generation (5G) or pre-5G communication system to be provided to support a higher data transfer rate. The present invention provides a method for a first device in a communication system supporting a device-to-device (D2D) scheme, the method comprising the steps of: when existence of a second D2D device, of which the location information needs to be detected, has been detected, transmitting a discovery request message which requests activation of at least one of an urgent discovery operation and a location measurement operation; receiving a discovery response message to the discovery request message from at least one device including the second device; and transmitting, to the second device, information related to execution of the location measurement operation.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate beyond a 4G communication system such as LTE. The present disclosure provides a method for performing device to device (D2D) discovery by a user equipment (UE), which is out of the coverage area serviced by a base station, in a wireless communication network, the method comprising the operations of: receiving pre-configuration information for transmitting a discovery message; and transmitting the discovery message in a transmission resource determined on the basis of the pre-configuration information, wherein the pre-configuration information includes a list of pools for transmitting the discovery message, and the transmission resource is determined from the list of pools.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for transmitting a device to device (D2D) discovery signal by a user equipment (UE) in a communication system supporting a D2D scheme is provided. The method includes determining transmission power for D2D discovery signal transmission, and transmitting a D2D discovery signal using the transmission power, wherein the transmission power is determined by considering a cell at which the D2D discovery signal is transmitted.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A base station and method thereof are provided for hybrid automatic retransmit request (HARQ) feedback in a wireless communication system. A method includes generating transmission beam information for transmitting hybrid automatic retransmit request (HARQ) feedback information for an uplink data packet received from a terminal; scheduling a HARQ feedback channel in a downlink subframe, based on the transmission beam information; and transmitting the HARQ feedback information, based on the HARQ feedback channel.
Abstract:
A method and an apparatus for synchronization for Device-to-Device (D2D) communication in unlicensed frequency bands are provided. The method includes determining whether a signal is detected during a preset time period within a synchronization period, after transmitting a synchronization signal during the synchronization period for the D2D communication, when it is determined that the D2D communication is to be performed, and starting the time period for the D2D communication and performing the D2D communication during the time period for the D2D communication, when it is determined that the signal is not detected.
Abstract:
Disclosed are a method, communication scheme and a system thereof for converging an IoT technology and a 5G communication system for supporting a high data transmission rate beyond that of a 4G system. The method, communication scheme and a system can be applied to intelligent services (for example, services related to a smart home, smart building, smart city, smart car, connected car, health care, digital education, retail business, security, and safety) based on the 5G communication technology and the IoT-related technology. A method for allocating resources for D2D communication by a User Equipment (UE) includes: identifying a movement direction of the UE; selecting a resource pool mapped to the identified movement direction among resource pools allocated according to the movement direction; and performing D2D communication using the selected resource pool.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate, following 4G communication systems such as LTE. According to the present disclosure, a direct communication method between terminals (D2D) comprises the steps of: the terminal receiving synchronization information and system information for D2D communication from at least one counterpart terminal; the terminal measuring the signal strength for a link with the at least one counterpart terminal; and the terminal determining on the basis of the measured signal strength, at least one counterpart terminal as a relay terminal connecting the network with the terminal, and transmitting data to the determined relay terminal.