Abstract:
Exemplary embodiments disclose an optical zoom probe including an aperture adjuster configured to adjust an aperture in which light transmitted by a light transmitter passes, a focus adjuster configured to focus the light passed through the aperture and adjust a focal length to an ultra-close location and a close location, and a filter which includes a center region in which incident light passes without change, and a filter region which surrounds the center region and increases a depth of focus (DOF) of light that is focused on the ultra-close location.
Abstract:
A variable liquid lens system is provided. The variable liquid lens system includes a lens barrel comprising a wall and first and second ends, wherein the first and second ends are substantially transparent, at least one liquid lens disposed in the lens barrel and contacting the wall, the at least one liquid lens comprising a droplet, and a plurality of spaces containing fluid positioned on opposite sides of the at least one liquid lens inside the lens barrel. A plurality of first holes are provided in the wall at a position corresponding to the plurality of spaces. The at least one liquid lens is configured so that a position of the at least one liquid lens within the lens barrel is adjustable by adjusting amounts of the fluid contained in the plurality of spaces via the plurality of first holes.
Abstract:
An aperture adjusting apparatus is provided. The aperture adjusting apparatus includes: a variable part of which an aperture size varies; an optical sensor configured to sense light incident to the variable device part and light output from the variable device part; an aperture calculator configured to calculate a size of an aperture formed in the variable part from light intensity sensed by the optical sensor; and a driving controller configured to control driving of the variable device part by receiving a calculation result fed back from the aperture calculator.
Abstract:
An optical zoom probe is provided. The optical zoom probe includes: an aperture adjuster which adjusts an aperture through which light which is transmitted by a light transmitter propagates; and a focus adjuster which focuses light that propagates through the aperture and which includes first and second liquid lenses for each of which respective curvatures are independently controlled so as to adjust a respective focal length.
Abstract:
Provided is an aperture adjusting apparatus for adjusting an aperture through which light transmits. The aperture adjusting apparatus includes: a chamber configured to have space in which fluid flows, the chamber including a lower channel, an upper channel, and a plurality of reservoir regions connecting the lower channel and the upper channel and each having a non-uniform width crossing a flow direction of a fluid to form a space in which fluid flows; a photo-interceptive first fluid and a photo-transmissive second fluid having a property that the photo-transmissive second fluid does not mix with the first fluid and that are prepared in the chamber; and a first electrode unit in which one or more electrodes to which a voltage is applied are arrayed to form an electric field in the chamber, wherein an aperture through which light transmits is adjusted by a location change of an interface between the first fluid and the second fluid according to the electric field.
Abstract:
The variable liquid device includes: a chamber including a channel, in which a fluid flows, having an inconsistent height in at least a part of the channel; a first fluid filled in the chamber and formed of a non-transmissive material; and a second fluid filled in the chamber and formed of a light transmittable material that does not mix with the first fluid, wherein an aperture, through which light is transmitted, is adjusted according to a variation of an interface between the first fluid and the second fluid.
Abstract:
An optical zoom probe is disclosed. The optical zoom probe includes: at least one liquid lens having a focus which is configured to be adjusted according to a flow of a fluid through a flow path; and a barrel provided to form the flow path and including a narrowed first end part including a first opening through which an image is captured, the at least one liquid lens being provided inside the barrel.
Abstract:
Provided are an optical switch, an optical probe including the optical switch, and a medical imaging apparatus including the optical probe. The optical probe includes a probe body that is configured to be insertable into a body cavity, and an optical switch that is disposed in the probe body and includes a first region formed of a material having a first refractive index, and a second region that forms an interface with the first region and is configured to have a fluid is introduced into the second region, wherein the optical switch is configured to change a path of propagation of incident light according to a second refractive index of the second region.
Abstract:
A microfluidic device and a method of controlling a fluid included in the microfluidic device. The microfluidic device includes: a chamber; a first fluid that is disposed in the chamber and in which a hygroscopic material is dissolved; a second fluid that is disposed in the chamber and is immiscible with the first fluid; and an electrode portion provide in the chamber and is configured to form an electrical field in the chamber when a voltage is applied to the electrode portion, wherein an interface between the first and second fluids is varied according to the electrical field.
Abstract:
Provided are a micro electric liquid device and an apparatus including the device. The micro electric liquid device includes a first fluid that is opaque, a second fluid that is transparent a first channel configured to have the first and second fluid flow therein without mixing, a second channel overlapped and spaced apart from the first channel, wherein the second channel is configured to have the first and second fluids flow therein, and a connection part connecting the first and second channels, wherein an aperture is adjusted by a positional change of an interface between the first and second fluids in the first and second channels, and wherein the second channel includes a first sub channel configured to have the first and second fluids flow therein and having a non-uniform height and a second sub channel configured to have the second fluid to flow therein and having a uniform height.