Abstract:
A side brush assembly including a side arm capable of being exposed outside a main body and returning inside the main body and a side brush unit mounted to the side arm, a robot cleaner and a control method of the robot cleaner is provided. The robot cleaner includes a main body and at least one side brush assembly to increase a dust-removing area. The side brush assembly includes a side brush body, a side arm mounted to a bottom surface of the side brush body and configured to be exposed outside the main body, a side brush unit rotatably mounted to the side arm, a lever configured to rotate together with the side arm, a cam configured to rotate by receiving driving force from a driving motor, and an elastic member connecting the lever and the cam to rotate the lever by elastic force thereof.
Abstract:
A robot cleaner includes a main body traveling along a floor surface and removing foreign substances in a cleaning travel mode, a sensor unit sensing obstacles around the main body, brush units sweeping foreign substances on a floor surface through rotation, and a controller reducing the traveling velocity of the main body and causing the main body to approach a front obstacle, if an area where a plurality of obstacles contacts each other is sensed by the sensor unit.
Abstract:
Disclosed herein are a robot cleaner having an improved travel pattern and a control method thereof. The robot cleaner performs cleaning using zigzag travel as a basic cleaning traveling manner, and then performs cleaning using random travel as a finishing cleaning traveling manner so as to clean areas skipped during the zigzag travel. The robot cleaner performs the zigzag travel while maintaining a designated interval with a travel route proceeding to a wall regardless of a direction proceeding to the wall, and employs an improved zigzag travel method to maintain a zigzag travel pattern, if the robot cleaner senses an obstacle during the zigzag travel.
Abstract:
A cleaning robot and a control method thereof include a main body traveling on a floor, and a first sub-cleaning tool and a second sub-cleaning tool mounted at left and right sides of the main body so as to be protruded from the inside to the outside of the main body and selectively performing cleaning Insertion of at least one of the first sub-cleaning tool and the second sub-cleaning tool is controlled when the main body is rotated under the condition that an obstacle is detected. Side brushes of the sub-cleaning tools are inserted into the main body according to the rotation direction of the main body when the main body is rotated during traveling, thus preventing collision with the obstacle.
Abstract:
A robot cleaner includes a main body traveling along a floor surface and removing foreign substances in a cleaning travel mode, a sensor unit sensing obstacles around the main body, brush units sweeping foreign substances on a floor surface through rotation, and a controller reducing the traveling velocity of the main body and causing the main body to approach a front obstacle, if an area where a plurality of obstacles contacts each other is sensed by the sensor unit.
Abstract:
A side brush assembly including a side arm capable of being exposed outside a main body and returning inside the main body and a side brush unit mounted to the side arm, a robot cleaner and a control method of the robot cleaner is provided. The robot cleaner includes a main body and at least one side brush assembly to increase a dust-removing area. The side brush assembly includes a side brush body, a side arm mounted to a bottom surface of the side brush body and configured to be exposed outside the main body, a side brush unit rotatably mounted to the side arm, a lever configured to rotate together with the side arm, a cam configured to rotate by receiving driving force from a driving motor, and an elastic member connecting the lever and the cam to rotate the lever by elastic force thereof.
Abstract:
A robot cleaner to perform a cleaning process by changing a traveling pattern according to a cleaning start position and a method for controlling the same are disclosed. The robot cleaner recognizes a current position of the robot cleaner upon receiving the automatic cleaning command. If the automatic cleaning process starts from the charger, the robot cleaner performs the automatic cleaning process using a conventional cleaning method. Otherwise, if the automatic cleaning process starts from the outside of the charger, the robot cleaner changes a traveling pattern, performs the spot cleaning process and then selectively performs the automatic cleaning process.
Abstract:
A robot cleaner system is described including a docking station to form a docking area within a predetermined angle range of a front side thereof, to form docking guide areas which do not overlap each other on the left and right sides of the docking area, and to transmit a docking guide signal such that the docking guide areas are distinguished as a first docking guide area and a second docking guide area according to an arrival distance of the docking guide signal. The robot cleaner system also includes a robot cleaner to move to the docking area along a boundary between the first docking guide area and the second docking guide area when the docking guide signal is sensed and to move along the docking area so as to perform docking when reaching the docking area.
Abstract:
A robot cleaner to perform a cleaning process by changing a traveling pattern according to a cleaning start position and a method for controlling the same are disclosed. The robot cleaner recognizes a current position of the robot cleaner upon receiving the automatic cleaning command. If the automatic cleaning process starts from the charger, the robot cleaner performs the automatic cleaning process using a conventional cleaning method. Otherwise, if the automatic cleaning process starts from the outside of the charger, the robot cleaner changes a traveling pattern, performs the spot cleaning process and then selectively performs the automatic cleaning process.
Abstract:
A method of controlling a mobile robot system is provided. The method includes at a mobile robot, transmitting a signal while traveling in a traveling region, at a beacon, receiving the signal transmitted from the mobile robot over 360 degrees and determining whether the mobile robot has approached the beacon, at the beacon, transmitting a response signal to the mobile robot if the mobile robot has approached the beacon, and at the mobile robot, performing avoidance navigation to prevent collision with the beacon when the mobile robot receives the response signal of the beacon.