Abstract:
Provided are an output buffer circuit having an amplifier offset compensation function and a source driving circuit including the output buffer circuit. The output buffer circuit may include a plurality of channel amplifiers, each of which is configured to adjust an amount of current flowing through transistors connected to at least one of a non-inverted input terminal and an inverted input terminal of a differential input unit to compensate an amplifier offset, and adjust buffer input voltage signals to generate output voltage signals.
Abstract:
A display driving circuit includes first through (2*n)-th buffers, a buffer controller, first through n-th image processing units, and a source driver. The buffer controller circularly selects one of the first through (2*n)-th buffers in an order from the first buffer to the (2*n)-th buffer at each of a plurality of first time intervals, and stores pixel data received during the first time interval in the selected buffer. Each of the first through n-th image processing units is coupled to two corresponding buffers among the first through (2*n)-th buffers, and processes the pixel data, which are stored in at least one of their corresponding buffers, during n of the first time intervals to generate processed data when the pixel data are stored in the corresponding buffer during the first time interval. The source driver generates analog signals based on the processed data.
Abstract:
A display driving device includes a first source amplifier that receives first display data and supplies a first pixel voltage to a first pixel based on the received first display data, and a second source amplifier that receives second display data and first control data and supplies a second pixel voltage to a second pixel based on the received second display data and first control data. The second source amplifier has a first stage in which a first process is performed on an input signal based on the second display data, and a second stage in which a second process is performed on the first processed input signal to output the second pixel voltage. The first source amplifier may be configured to conditionally supply the first pixel voltage to the second pixel.
Abstract:
A panel driving circuit that produces a panel test pattern and a method of testing a panel are provided. The driving circuit includes a pattern generation unit and a selection unit. The pattern generation unit responds to a system clock and produces pattern test data and pattern test signals. The selection unit responds to a test signal and selects and outputs either (a) the pattern test data and the pattern test signals that are outputted from the pattern generation unit, or (b) the pattern test data and pattern test signals that are directly applied from the outside. The driving circuit and the method of the panel test generates the panel test data, the horizontal synchronizing signal, the vertical synchronizing signal, and the data activating signal within the driving circuit using a system clock so that the testing of the panel can be carried out without using a separate test device.
Abstract:
A display driving circuit includes first through (2*n)-th buffers, a buffer controller, first through n-th image processing units, and a source driver. The buffer controller circularly selects one of the first through (2*n)-th buffers in an order from the first buffer to the (2*n)-th buffer at each of a plurality of first time intervals, and stores pixel data received during the first time interval in the selected buffer. Each of the first through n-th image processing units is coupled to two corresponding buffers among the first through (2*n)-th buffers, and processes the pixel data, which are stored in at least one of their corresponding buffers, during n of the first time intervals to generate processed data when the pixel data are stored in the corresponding buffer during the first time interval. The source driver generates analog signals based on the processed data.
Abstract:
A voltage generator includes a boosting circuit boosting a power voltage to generate first through fourth voltages, and a boosting controller controlling the boosting circuit. The boosting controller sets the third and fourth voltages to a voltage level lower than that of a ground voltage while the first and second voltages are generated, so that a plurality of voltages may be stably generated, i.e., without latch-up.
Abstract:
A panel driving circuit that produces a panel test pattern and a method of testing a panel are provided. The driving circuit includes a pattern generation unit and a selection unit. The pattern generation unit responds to a system clock and produces pattern test data and pattern test signals. The selection unit responds to a test signal and selects and outputs either (a) the pattern test data and the pattern test signals that are outputted from the pattern generation unit, or (b) the pattern test data and pattern test signals that are directly applied from the outside. The driving circuit and the method of the panel test generates the panel test data, the horizontal synchronizing signal, the vertical synchronizing signal, and the data activating signal within the driving circuit using a system clock so that the testing of the panel can be carried out without using a separate test device.