Abstract:
A condition-based monitoring system receives a plurality of measurements from sensors measuring mechanical and electrical aspects of a prime mover and a synchronous machine. The condition-based monitoring system determines a correlation between the mechanical measurements and electrical measurements to estimate parameters of the model. The condition-based monitoring system also updates the model as sensors obtain additional measurements during operation of the prime mover.
Abstract:
A frequency tracking system may use shaft speed and electrical frequency to estimate a frequency of a monitored machine. The frequency tracking system may convert shaft speed to a mechanical frequency and blend the electrical frequency and the mechanical frequency together to determine an estimated frequency. The frequency tracking system may blend the frequencies based on an operating state of the monitored machine and the frequency sensors.
Abstract:
A device to control a genset engine may use multiple feedback loops to provide a fast stable response to load changes. An outer feedback loop may receive frequency measurements and power measurements of a genset engine and determine a dispatch adjustment comprising a frequency setpoint based on the frequency measurements and power measurements. A middle feedback loop may comprise a double deadband droop filter that periodically generates a pulse based on the frequency setpoint and the power measurements. The middle feedback loop may update an inner loop setpoint based on the pulse. An inner feedback loop may alter a target fuel valve reference of the genset engine based on the inner loop setpoint generated by the second controller and a fuel valve droop.
Abstract:
Electric power system voltage control and voltage stability may be calculated using energy packets. Sets of negative energy packet sets normalized by a set of positive and negative energy packet sets may be used for voltage control by adding or removing capacitive units. Energy packet voltage indicators may be calculated using energy packets, and used to determine voltage stability. Control actions may be taken depending on the determined voltage stability.
Abstract:
A controller may use energy packets to control a prime mover of a machine. The controller may include an energy packet measurement control to calculate energy packets and convert the energy packets into a fuel valve reference. Further, a frequency control may receive system feedback associated with the monitored machine and generate a frequency correction based on the system feedback. The controller may add the energy packet value and the frequency correction to determine a prime mover power reference and provide the prime mover power reference to a fuel valve control of the machine.
Abstract:
Disclosed is state trajectory prediction in an electric power delivery system. Electric power delivery system information is calculated from measurements by intelligent electronic devices (IEDs), and communicated to a state trajectory prediction system. The state trajectory prediction system may be configured to generate a load prediction profile. The load prediction profile may provide a predicted response of a load at a future time. Further, the state trajectory prediction system may be configured to generate a generator prediction profile that provides a predicted response of a generator at a future time. The state trajectory prediction system may generate a state trajectory prediction based, at least in part, on the load prediction profile and the generator prediction profile. The state trajectory prediction may represent a future state of the electric power delivery system.
Abstract:
Systems may include a first data acquisition subsystem, a second data acquisition subsystem, and a traveling wave analysis subsystem. The traveling wave analysis subsystem may be configured to analyze measured traveling wave data from the first data acquisition subsystem and the second data acquisition subsystem. Additionally, methods of analyzing traveling wave data resulting from a fault on an electric power delivery system may involve analyzing measured electrical properties of at least one traveling wave.
Abstract:
A controller may use energy packets to control a prime mover of a machine. The controller may include an energy packet measurement control to calculate energy packets, perform post-processing actions on the energy packets to generate processed energy packets, and convert the processed energy packets into a fuel valve reference. Post-processing may include a calibration correction to remove measurement artifacts.
Abstract:
A controller may use energy packets to control a prime mover of a machine. The controller may include an energy packet measurement control to calculate energy packets, perform post-processing actions on the energy packets to generate processed energy packets, and convert the processed energy packets into a fuel valve reference. Post-processing may include a calibration correction to remove measurement artifacts.
Abstract:
An intelligent electronic device (IED) may monitor wet stack residue buildup of a diesel engine. Once the wet stack residue accumulates to a certain amount, the IED may perform a mitigation procedure. Additionally, tracking wet stack residue buildup may allow an IED to attempt to prevent or reduce accumulation of the wet stack residue. The IED may track an operating power level of the diesel engine to estimate the rate of residue buildup.