Abstract:
An analysis system (e.g., LIBS) includes a laser source generating a laser beam, a movable optic configured to move said laser beam to multiple locations on a sample, and a spectrometer responsive to photons emitted by the sample at those locations and having an output. A controller is responsive to a trigger signal and is configured in a moving spot cycle to adjust the moveable optic, activate the laser source sequentially generating photons at multiple locations on the sample, and process the spectrometer output at each location.
Abstract:
An analysis system includes a laser source generating a laser beam for creating a plasma at a location on a sample. A spectrometer is responsive to photons emitted by the sample at said location and has an output. At least one nozzle is configured to deliver inert gas from a source locally to the location on the sample. A controller is responsive to a trigger signal and is configured to activate the laser source generating a series of laser pulses, open a valve to purge the location locally on the sample, and close the valve after one or more laser pulses.
Abstract:
An analysis system (e.g., LIBS) includes a laser source generating a laser beam, a movable optic configured to move said laser beam to multiple locations on a sample, and a spectrometer responsive to photons emitted by the sample at those locations and having an output. A controller is responsive to a trigger signal and is configured in a moving spot cycle to adjust the moveable optic, activate the laser source sequentially generating photons at multiple locations on the sample, and process the spectrometer output at each location.
Abstract:
Featured is a spectral analysis method and a wide spectral range spectrometer including a source of electromagnetic radiation and an optical subsystem configured to disperse radiation into a plurality of wavelengths. A pixilated light modulator receives the radiation wavelengths and is configured to direct one or more selective wavelengths to a sample.
Abstract:
A method of and system for detecting the concentration of a target element in a brine wherein the brine is sampled into a container and an aerosol generator is used to generate an aerosol stream of the sampled brine in the container. The aerosol stream may be directed to a collection system. A handheld LIB S device directs a laser beam to the aerosol stream at a location between the aerosol generator and the collection system to generate a plasma. The plasma is analyzed to detect intensity data for a reference element based on the generated plasma and to detect the intensity data of a target element based on the generated plasma. The concentration of the target element in the brine is calculated based on the reference element intensity data and the target element intensity data.
Abstract:
An analysis (e.g., LIBS) system includes a laser source generating a laser beam for creating a plasma at a location on a sample, and a spectrometer responsive to photons emitted by the sample at said location and having an output. A controller is responsive to a trigger signal and is configured to activate the laser source generating a series of laser pulses in a cleaning cycle, process the spectrometer output, and automatically terminate the cleaning cycle based on the spectrometer output.
Abstract:
An analysis system includes a moveable focusing lens, a laser (typically an eye safe laser) having an output directed at the focusing lens, and a spectrometer outputting intensity data from a sample. A controller system is responsive to the spectrometer and is configured to energize the laser, process the output of the spectrometer, and adjust the position of the focusing lens relative to the sample until the spectrometer output indicates a maximum or near maximum intensity resulting from a laser output focused to a spot on the sample.
Abstract:
An analysis system (e.g., LIBS) includes a laser source generating a laser beam, a movable optic configured to move said laser beam to multiple locations on a sample, and a spectrometer responsive to photons emitted by the sample at those locations and having an output. A controller is responsive to a trigger signal and is configured in a moving spot cycle to adjust the moveable optic, activate the laser source sequentially generating photons at multiple locations on the sample, and process the spectrometer output at each location.
Abstract:
An analysis system (e.g., LIBS) includes a laser source generating a laser beam, a movable optic configured to move said laser beam to multiple locations on a sample, and a spectrometer responsive to photons emitted by the sample at those locations and having an output. A controller is responsive to a trigger signal and is configured in a moving spot cycle to adjust the moveable optic, activate the laser source sequentially generating photons at multiple locations on the sample, and process the spectrometer output at each location.
Abstract:
A handheld LIES device includes a laser source for generating a laser beam, a spectrometer subsystem for analyzing a plasma generated when the laser beam strikes a sample, and a nose section including an end plate with an aperture for the laser beam and for receiving plasma radiation and an optic spaced from the end plate defining with the end plate a cavity therebetween. An atmospheric purge subsystem includes an air pump with an intake exposed to the atmosphere and a conduit connected to the air pump providing an atmospheric gas mixture to the nose section cavity to purge the cavity of contaminants and keep the optic clean as the atmospheric gas mixture exits the cavity through the end plate aperture.