Abstract:
Described are clamps useful for temporarily holding a slider of a hard disk drive in a test socket for dynamic electrical testing of the slider, as well as related assemblies that include the test socket, a head-gimbal-assembly, a testing assembly, and related methods of use.
Abstract:
An apparatus includes a slider test socket. The slider test socket includes a clamp, which includes a body, a handle having an opening, and a plurality of arms that extend between the body at a first end of the clamp and the handle at a second end of the clamp.
Abstract:
A clamp for removably holding a slider includes a stationary frame that includes a stationary rear frame member at a rear portion of the frame, extending in a width direction, at least one spring extending in a horizontal plane, and an open space extending in a length direction and the width direction. The open space is defined in the length direction in part by a front contact surface at a forward portion of the clamp adapted to engage one end of the slider, and a rear contact surface at a rear portion of the clamp, and adapted to engage an opposite end of the slider. The spring connects the stationary frame with the front contact surface such that with deflection of the spring the front contact surface is moveable relative to the frame in a direction of a lengthwise axis of the clamp.
Abstract:
A data storage device can employ a gimbal tongue flexure suspended from a load beam with a transducing head mounted to the gimbal tongue flexure. The transducing head can be separated from a magnetic recording medium by an air bearing. At least one active or non-active damper may be positioned on a strut of the gimbal tongue flexure.
Abstract:
A data storage device may employ a suspension that positions a transducing head proximal a data storage medium. The suspension can consist of an active fiber composite that spans a portion of a loadbeam. The active fiber composite can be configured with at least one active fiber contacting a supporting layer.
Abstract:
A flex circuit including a multiple layer structure is disclosed. The multiple layered structure includes a first or top layer and a second or base layer. Top traces and bond pads are fabricated on the top or obverse layer and interlayer traces and bond pads are fabricated between the first and second layers to provide an electrical interconnect to electrical components on a head assembly. In an illustrated embodiment, the flex circuit includes portions including the first or base layer and the second or top layer and one or more reduced thickness portion including the first or base layer and not the second layer. In one embodiment, the gimbal portion of the flex circuit includes the first layer and not the second layer of the multiple layer structure and in another embodiment a bending portion of the flex circuit includes the first base layer and not the second layer of the multiple layered structure to provide a reduced thickness to facilitate bending, for example in a micro-actuation region of the load beam.
Abstract:
Described are clamps useful for temporarily holding a slider of a hard disk drive in a test socket for dynamic electrical testing of the slider, as well as related assemblies that include the test socket, a head-gimbal-assembly, a testing assembly, and related methods of use.
Abstract:
Described are clamps useful for temporarily holding a slider of a hard disk drive in a test socket for dynamic electrical testing of the slider, as well as related assemblies that include the test socket, a head-gimbal-assembly, a testing assembly, and related methods of use.
Abstract:
A data storage device can employ a microactuator system that efficiently translates longitudinal microactuator strain into movement in-plane with a mid-plane of a gimbal tongue. A gimbal tongue may be suspended from a load beam with a transducing head mounted to the gimbal tongue and the transducing head separated from a magnetic recording medium by an air bearing. A microactuator attached to the gimbal tongue can be positioned so that a mid-plane of the microactuator is congruent with a mid-plane of the gimbal tongue.
Abstract:
A data storage system can employ at least one transducing head that is suspended above a data storage medium to access data. The transducing head suspension can be configured with a resonance system where a gimbal flexure is mounted to a load beam via a physical connection. The gimbal flexure may support a transducing head and contact the load beam via the physical connection, a dimple, and a first contact feature concurrently while the physical connection, dimple, and first contact feature are each separate and different points of physical contact.