Abstract:
A connection structure for a substrate is provided. The substrate has a plurality of connection pads and an insulation protection layer with the connection pads being exposed therefrom. The connection structure includes a metallic layer formed on an exposed surface of each of the connection pads and extending to the insulation protection layer, and a plurality of conductive bumps disposed on the metallic layer and spaced apart from one another at a distance less than or equal to 80 μm, each of conductive bumps having a width less than a width of each of the connection pads. Since the metallic layer covers the exposed surfaces of the connection pads completely, a colloid material will not flow to a surface of the connection pads during a subsequent underfilling process of a flip-chip process. Therefore, the colloid material will not be peeled off from the connection pads.
Abstract:
A connection structure for a substrate is provided. The substrate has a plurality of connection pads and an insulation protection layer with the connection pads being exposed therefrom. The connection structure includes a metallic layer formed on an exposed surface of each of the connection pads and extending to the insulation protection layer, and a plurality of conductive bumps disposed on the metallic layer and spaced apart from one another at a distance less than or equal to 80 μm, each of conductive bumps having a width less than a width of each of the connection pads. Since the metallic layer covers the exposed surfaces of the connection pads completely, a colloid material will not flow to a surface of the connection pads during a subsequent underfilling process of a flip-chip process. Therefore, the colloid material will not be peeled off from the connection pads.
Abstract:
A connection structure for a substrate is provided. The substrate has a plurality of connection pads and an insulation protection layer with the connection pads being exposed therefrom. The connection structure includes a metallic layer formed on an exposed surface of each of the connection pads and extending to the insulation protection layer, and a plurality of conductive bumps disposed on the metallic layer and spaced apart from one another at a distance less than or equal to 80 μm, each of conductive bumps having a width less than a width of each of the connection pads. Since the metallic layer covers the exposed surfaces of the connection pads completely, a colloid material will not flow to a surface of the connection pads during a subsequent underfilling process of a flip-chip process. Therefore, the colloid material will not be peeled off from the connection pads.
Abstract:
A package stack structure and a method for fabricating the same are provided. An electronic component is disposed on the topmost one of a plurality of organic material substrates, and no chip is disposed on the remaining organic material substrates. A predefined layer number of circuit layers are disposed in the organic material substrates, and distributes the thermal stress via the organic material substrates. Therefore, the bottommost one of the organic material substrates will not be separated from a circuit board due to CTE mismatch. Also a carrier component is provided.