Abstract:
A fluid pump for pumping a subject fluid. The fluid pump including, a pump body, a first cavity within the pump body, a second cavity within the pump body, a flexible member, an incompressible fluid, a subject fluid chamber, and a piston. Piston may include a piston head and an elongated piston shaft. The piston may be configured to amplify a first pressure experienced on a first side of the piston head and exerted by a pressurized drive fluid to a second pressure experienced on an end surface of the elongated piston shaft and exerted on the incompressible fluid within the flexible member. The subject fluid may in turn be pressurized to a third pressure substantially equal to the second pressure.
Abstract:
A fluid pump includes a pump body enclosing a first cavity and a second cavity, a first flexible member disposed within the first cavity, a second flexible member disposed within the second cavity, and a drive shaft extending between and attached to each of the first flexible member and the second flexible member. The drive shaft is configured to slide back and forth within the pump body. The pump also includes a first shift valve and a second shift valve disposed between the first flexible member and the second flexible member, operatively coupled to deliver a drive fluid to drive fluid chambers in alternating sequence. Some fluid pumps disclosed herein include a housing defining a modular-receiving cavity and a modular insert secured within the modular-receiving cavity by an interference fit. Methods of manufacturing and using fluid pumps are also disclosed.
Abstract:
A multi-port metering pump assembly may include a manifold coupled to a metering pump. The manifold may define a central passage in fluid communication with a plurality of intermediate passages defined in the manifold. The manifold may further include a plurality of outer passages of the manifold. Each intermediate passage may provide fluid communication between the central passage and a corresponding outer passage. A plurality of valves may be coupled to the manifold. Each valve of the plurality of valves may be located between an intermediate passage and a corresponding outer passage, and be configured to enable or prevent passage of fluid between a corresponding intermediate passage of the plurality of intermediate passages and a corresponding outer passage. The multi-port metering pump assembly may also include an electronic controller coupled to the plurality of valves, the electronic controller having an associated electronic interface and being programmable to selectively and independently open and close the valves of the plurality of valves.
Abstract:
A multi-port metering pump assembly includes a manifold coupled to a metering pump. The manifold defines a central passage in fluid communication with a plurality of intermediate passages defined in the manifold. The manifold includes a plurality of outer passages. Each intermediate passage provides fluid communication between the central passage and a corresponding outer passage. A plurality of valves is coupled to the manifold. Each valve of the plurality of valves is located between an intermediate passage and a corresponding outer passage, and is configured to enable or prevent passage of fluid between a corresponding intermediate passage of the plurality of intermediate passages and a corresponding outer passage. The multi-port metering pump assembly also includes an electronic controller coupled to the plurality of valves, the electronic controller having an associated electronic interface and being programmable to selectively and independently open and close the valves of the plurality of valves.